**Table of Contents** Foreword / Introduction and Historic Remarks / The Diffraction Problem in Angular Domains / Solutions of the Helmholtz Equation by the Sommerfeld Integral / Sommerfeld Integral in the Problem of the Plane-Wave Diffraction by a Perfect Wedge / Sommerfeld-Diffraction Problem on a Riemann Surface and the Uniform Far-Field Asymptotics / Diffraction by a Wedge with Impedance-Boundary Conditions (the Malyuzhinets Problem) / General Theory of the Malyuzhinets-Type Equations with One Unknown Function / Green Function for an Angular Domain (Cylindrical-Wave Diffraction) / Diffraction of a Plane Wave by a Wedge with Thin Dielectric Coatings / Wave Diffraction in the Wedge’s Exterior Bisected by a Thin Semi-Transparent Layer / Diffraction of a Skew-Incident Plane Electromagnetic Wave by an Impedance Wedge / Concluding Remarks / Appendices – On the Saddle-Point Technique / The Stationary-Phase Method / The Fresnel Integral / The Kirchhoff and Physical-Optics Approximations / Computation of the Malyuzhinets Function / References / Index.
**Audience**
Postgraduate Students, Professionals & Researchers in Wave / Electrical & Electronics Engineering, Physics and Applied Mathematics |