sitemap | contact us
      
 
  Book Series
  Journals
  Book Proposal Form
 
  Using Published Material
  Rights and Permissions
  Examination Copies
   
   
  List of Publishers
  Bargains
   
   
  Services
   
   
  About Narosa
  History
  Mission
  Group Companies
  Our Strength
  Alliances
   
   
   
 
view in print mode
Galois Cohomology of Elliptic Curves , Second Edition
Author(s): J. Coates, R. Sujatha

ISBN:    978-81-8487-023-7 
Publication Year:   2010
Pages:   112
Binding:   Paper Back
Dimension:   160mm x 240mm
Weight:   200



About the book

The genesis of these notes was a series of four lectures given by the first author at the Tata Institute of Fundamental Research. It evolved into a joint project and contains many improvements and extensions on the material covered in the original lectures. Let F be a finite extension of Q, and E an elliptic curve defined over F. The fundamental idea of the Iwasawa theory of elliptic curves, which grew out of Iwasawa's basic work on the ideal class groups of cyclotomic fields, is to study deep arithmetic questions about E over F, via the study of coarser questions about the arithmetic of E over various infinite extensions of F. These notes will mainly discuss the simplest non-trivial example of the Iwasawa theory of E over the cyclotomic Zp-extension of F. However, we also make some comments about the Iwasawa theory of E over the field obtained by adjoining all p-power division points on E to F. We have also discussed in detail a number of numerical examples. The only changes made to the original notes have been to take modest account of the considerable progress which has been made in non-commutative Iwasawa theory in the intervening years. We have also included a short section on the deep theorems of Kato on the cyclotomic Iwasawa theory of elliptic curves.



Table of Contents

Preface / Notation / Basic Results from Galois Cohomology / The Iwasawa Theory of the Selmer Group / The Euler Characteristic Formula / Numerical Examples over the Cyclotomic Zp-extension of Q / Numerical Examples Over Q / Appendix / Bibliography.




Audience

Postgraduate and Doctoral Students and Researchers


CLICK HERE


Group
| Companies | Mission | Strength | Values | History | Contact us
© Narosa Publishing House