sitemap | contact us
      
 
  Book Series
  Journals
  Book Proposal Form
 
  Using Published Material
  Rights and Permissions
  Examination Copies
   
   
  List of Publishers
  Bargains
   
   
  Services
   
   
  About Narosa
  History
  Mission
  Group Companies
  Our Strength
  Alliances
   
   
   
 
view in print mode
First Course in Functional Analysis, A
Author(s): D. Somasundaram

ISBN:    978-81-7319-743-7 
E-ISBN:   
Publication Year:   Reprint 2017
Pages:   410
Binding:   Paper Back
Dimension:   180mm x 240mm
Weight:   700


Textbook


About the book

A First Course in Functional Analysis lucidly covers Banach spaces, continuous linear functionals, the basic theorems of bounded linear operators, Hilbert spaces, operators on Hilbert spaces, spectral theory and Banach algebras usually taught as a core course to post-graduate students in mathematics. The special distinguishing features of the book includes the establishment of the spectral theorem for the compact normal operators in the infinite dimensional case exactly in the same form as in the finite dimensional case and a detailed treatment of the theory of Banach algebras leading to the proof of the Gelfond Neumark structure theorem for Banach algebras.


Key Features

  • Examples at the End of Each Chapter Elementary Problems to Illustrate Theory Challenging Exercises as Theorems



Table of Contents

Preface / Banach Spaces / Continuous Linear Functionals / The Basic Theorems of Bounded Linear Operators / Hilbert Spaces / Operators on Hilbert Spaces / Spectral Theory / Banach Algebras / References / Index.




Audience

Graduate, Students and Teachers


CLICK HERE


Group
| Companies | Mission | Strength | Values | History | Contact us
© Narosa Publishing House