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CHAPTER 1 

 
1) It will give an error of ‘Inconsistent multiplication’. 

 

2) The correct answers are, 

   a)   4.    10.    18.   

 b)   32. 

 c)   4.     5.     6.    
       8.    10.   12.   

      12.   15.   18.  

 

3) The command will print the elements of all the rows and columns. 
1.    2.    3.   
4.    5.    6. 

 

4) B = 8.84    9.32    3.61   

 

5) B = 8.    9.    3.   
 

6) The result of the operations is tabulated in Table 1.6. 

 

Table 1.6: Solution for Exercise 6 

 

𝐀 =   
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

  

SciLab Command Output 

A(1,:) = 2*A(1,:) 

A  = 

2.    4.    6. 

4.    5.    6. 

7.    8.    9. 

A(1,:) = A(1,:) + A(2,:) 

A  = 

5.    7.    9. 

4.    5.    6. 

7.    8.    9. 

A(:,2) = 3*A(:,2) 

A  = 

    1.    6.     3.   

    4.    15.    6.   

    7.    24.    9.   

A(:,1) = A(:,1) - 0.5*A(:,2) 

 

A  = 

    0.     2.    3.   

    1.5    5.    6.   

    3.     8.    9.   

 

7) A(length(A)) 

 

8) A = - 1.    2.    3.  
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9) The output is written below. 
1.    2.   
3.    4.   
5.    6.   

 

10) The SciLab command will be, 
A(1:2,2:4) = 2 

 

11) The SciLab command will be, 
A = [ones(1, 3) ; zeros(1,3); ones(1, 3)]; 

 
12) Consider two points having the following position vectors. 

𝐴 =  𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘  

𝐵  =  𝑏1𝑖 +  𝑏2𝑗 +  𝑏3𝑘  
The distance between these two points is given by, 

  𝑎1 − 𝑏1 
2 +  𝑎2 − 𝑏2 

2 +  𝑎3 − 𝑏3 
2 

The SciLab code for determining this distance between the given points is 

given below. 

 
function d = distance(a,b) 

d = sqrt(sum((a-b).^2)) 

endfunction 

A = [1 2 3]; 

B = [4 5 6]; 

distance(a,b) 

 
 

13) The SciLab program is written below. 

 
function SC = sum_cube(a) 

SC = sum(a.^3) 

endfunction 

A = [1 2 3]; 

sum_cube(A); 

 
 

14) If [a b c] and [d e f] are two vectors, then their scalar or dot product 

is defined by, 
[a b c].[d e f]= a*d + b*e + c*f 

Therefore, for two vectors 𝐴  and 𝐵  , the function for determining the scalar 
product can be written in the following manner. 

 
function SP = scalar_product(A,B); 

SP = sum(A.*B); 

endfunction 
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15) Suppose, 𝑐 = 𝑎 × 𝑏   
The function and the SciLab program for determining the cross product of 

two vectors is given by, 

 
function [c] = cross_product(a,b) 

c = [a(2)*b(3)-a(3).*b(2) a(3)*b(1)-a(1)*b(3) a(1)*b(2)-

a(2)*b(1)]; 

endfunction 

a = [1 2 3]; 

b = [4 5 6]; 

c = cross_product(a,b) 

 
 

16) The angle between two vectors 𝐴  and 𝐵   is 𝜃 such that, 

cos𝜃 =
𝐴 ∙ 𝐵  

 𝐴   𝐵   
 

The SciLab program for determining this angle is written below. 

 
function angle = angle_between_vectors(A,B) 

length_A = (A(1)^2 + A(2)^2 + A(3)^2)^0.5; 

length_B = (B(1)^2 + B(2)^2 + B(3)^2)^0.5; 

angle = acosd((sum(A.*B))/(length_A*length_B)) ; 

endfunction 

A = [3 4 2]; 

B = [2 2 -3]; 

angle_between_vectors(A,B) 

 
 

17) Consider a parallelepiped whose adjacent sides are the vectors  𝐴 , 𝐵 and 𝐶  
(see Figure  1.10). The volume of the parallelepiped is given by the 

scalar triple product of these three vectors, i.e. 

𝑉 =    𝐴 × 𝐵   ∙ 𝐶   
The SciLab program written below calculates the volume of a parallelepiped 

where the three vectors are equal to, 

𝐴 = 2𝑖 + 2𝑗 + 2𝑘  

𝐵  = 5𝑖 + 3𝑗 − 𝑘  

𝐶 = 2𝑖 + 4𝑗 + 6𝑘  

 
A = [2, 2, 2]; 

B = [5, 3, -1]; 

C = [2, 4, 6]; 

abs(A* cross(B,C)') = abs(B* cross(C,A)') = abs(C* 

cross(B,A)') 

 
 

The answer will be equal to 8. 
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Figure 1.10: Diagram for Exercise 17 

 

18) The SciLab program is written below. 

 
A = [1 2 3] 

P = poly(0,'a') 

B = p*A 

 

The answer will be equal to, B = a     2a     3a 

 
19) The SciLab program is written below. 

 
A = [1 2 3] 

P = poly(0,'a') 

u = [1+p, (1+p)^2, (1+p)^3 ] 

B = A.*u 

 
The answer will be equal to, 
B =  

                          2               2    3   

     1 + a     2 + 4a + 2a     3 + 9a + 9a + 3a   

 

20) The SciLab program is written below. 

 
function [integral] = indef_integral_poly(p) 

coefficient = coeff(p); 

a = 1; 

for i = 1:length(coefficient); 

 a = [a i]; 

end 

new_coeff = [0 coefficient]; 

new_coeff = new_coeff./a; 

integral = poly(new_coeff,varn(p),'coeff'); 

endfunction 

 

//Define the polynomial 

 

 

𝜃 

C 

B 

A 
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polynomial = poly([1],'x','coeff') 

  

//Call the function 

indef_integral_poly(polynomial)  

 

//Determine the value of the integral at x = 2. 

horner(indef_integral_poly(polynomial),2) 

 
 

The integral will be equal to ‘𝑥’. Its value at 𝑥 = 2 will be equal to 2. 

 

21) The function to evaluate the indefinite integral remains same as in the 

previous question. The SciLab program is written below. 

 
polynomial = poly([0 1],'x','coeff') 

Answer_1 = indef_integral_poly(polynomial)  

Answer_2 = horner(indef_integral_poly(polynomial),2) 

 
The answer will be equal to, 

Answer_1 = 0.5𝑥2 
Answer_2 = 2 

 

22) The SciLab program is written below. 

 
q = poly(3,'x','r') 

 
 

The answer will be equal to, 
     q = - 3 + x 

 

23) The SciLab program is written below. 

 
m = input("Enter the number of rows in the matrix : "); 

n = input("Enter the number of columns in the matrix : 

"); 

disp("Enter the elements of the matrix row wise"); 

for i = 1:1:m; 

 for j = 1:1:n; 

  A(i,j) = input(" "); 

 end 

end 

disp(A,"Matrix A : "); 

det(A) 

det(A’) 

 
 

The output of this program is as follows. 
A = 
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0.    7.    2.   

5.    1.    2.   

6.    5.    2.   

det(A) = 52 

det(A’) = 52 

 

24) The SciLab program is written below. 

 
A = [1 2 + %i 3 ; 2 - %i 4 5*%i ; 3 -5*%i 6] 

if A' == A then 

 disp("Matrix is Hermitian"); 

else 

 disp("Matrix is not Hermitian"); 

end 

 
 

The output of this program is as follows. 
A =  

1.          2. + i      3.    

2. - i      4.          5.i   

3.        - 5.i         6.    

 

A' =  

1.          2. + i      3.    

2. - i      4.          5.i   

3.        - 5.i         6.   

Matrix is Hermitian 

 

25) For an orthogonal matrix (𝐴)  

𝐴𝐴𝑇 =  𝐴𝑇𝐴 = 𝐼 
The SciLab program is written below. 

 
A = [sind(30) cosd(30) ; -cosd(30) sind(30)] 

A.'*A  

A*A.' 

 
 

The output of this program is as follows. 
A = 

0.5           0.8660254   

- 0.8660254     0.5         

 

A.’*A =  

1.  0. 

0.  1. 

  

A*A.’ =  

1.  0. 
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0.  1. 

 

26) For a unitary matrix (𝐴)  

𝐴𝐴𝐶
𝑇

=  𝐴𝐶
𝑇
𝐴 = 𝐴𝐴+ =  𝐴+𝐴 =  𝐼 

The SciLab program is written below. 

 
A = [%i 0 ; 0 %i] 

A*A' 

A'*A 

 
 

The output of this program is written below. 
    A = 

     i      0     

     0      i     

    A*A' =  

   1.    0    

     0     1.   

A'*A =  

     1.    0    

     0     1.   

 

27) The SciLab program is written below. 

 
A = [1 2+%i 3 ; 2-%i 4 5*%i ; 3 -5*%i 6] 

format(5) 

[eigen_vector,eigen_value] = spec(A) 

clean(eigen_vector(:,1)'*eigen_vector(:,3)) 

clean(eigen_vector(:,1)'*eigen_vector(:,2)) 

clean(eigen_vector(:,1)'*eigen_vector(:,1)) 

 

The output of this program is written below. 
eigen_value  = 

    - 2.83    0.      0.     

       0.      3.23    0.     

       0.      0.      10.6   

eigen_vector  = 

        0.61 - 0.24i   - 0.42 + 0.58i    0.19 + 0.13i   

       - 0.14 + 0.53i    0.35 + 0.47i    0.08 + 0.59i   

       - 0.51          - 0.39            0.77          

clean(eigen_vector(:,1)'*eigen_vector(:,3)) = 0 

clean(eigen_vector(:,1)'*eigen_vector(:,2)) = 0 

clean(eigen_vector(:,1)'*eigen_vector(:,1)) = 1 

 

28) The conversion of components of a vector  𝐴   from Cartesian system 

 𝐴𝑥 ,𝐴𝑦 ,𝐴𝑧  to cylindrical system  𝐴𝑟 ,𝐴𝜃 ,𝐴𝑧  is given by, 
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𝐴𝑟
𝐴𝜃
𝐴𝑧

 =   
cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0

0 0 1
  

𝐴𝑥
𝐴𝑦
𝐴𝑧

  

The SciLab program written below determines the components of the given 

vector in cylindrical coordinate system. 

 
exec('vectors.sci',-1); 

A = [2 -3 4];       

    //Coordinates of the point 

B = cartesian_to_cylindrical(A); 

x = B(1).*cosd(B(2));        //Define 𝑥 in terms of  𝑟,𝜃   
y = B(1).*sind(B(2));        //Define 𝑦 in terms of  𝑟, 𝜃   
z = B(3) 
A = [x.*y z y];           

//Components of the vector 

Answer = [cosd(B(2)) sind(B(2)) 0 ; -sind(B(2)) 

cosd(B(2)) 0 ; 0 0 1]*[A(1) ; A(2) ; A(3)] 

 
 

The answer will be equal to, 

𝐴𝑟 = 6.6564024 
𝐴𝜃 = 2.773501 
𝐴𝑧 = 3 

 

31) The SciLab program is written below. 

 
A = [90 -40 50 ; -40 80 -30 ; -50 -30 100]; 

C = [5 ; 0 ; 0]; 

B = A\C 

 

The answer will be equal to, 

𝐼1 = 0.0522828 

𝐼2 = 0.0405007 

𝐼3 = 0.0382916 
 

32) Let mass of the cube is ‘M’. It is distributed uniformly. Therefore mass per 

unit volume will be equal to 
𝑀

𝑎3. The elements of the moment of inertia tensor 

can be obtained in the following manner. 

 

𝐼𝑥𝑥 =
𝑀

𝑎3
    𝑦2 + 𝑧2 

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 =
2

3
𝑀𝑎2 

𝐼𝑦𝑦 =
𝑀

𝑎3
    𝑥2 + 𝑧2 

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦 =
2

3
𝑀𝑎2  
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𝐼𝑧𝑧 =
𝑀

𝑎3
    𝑥2 + 𝑦2 

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 =
2

3
𝑀𝑎2 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = −
𝑀

𝑎3
   𝑥𝑦

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 = −
1

4
𝑀𝑎2 

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = −
𝑀

𝑎3
   𝑥𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦 = −
1

4
𝑀𝑎2 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = −
𝑀

𝑎3
   𝑦𝑧

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 = −
1

4
𝑀𝑎2  

This gives, 

𝐼 =  𝑀𝑎2  
2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3

  

 

The SciLab program to determine the principal axes is written below. 

 
A = [2/3 -1/4 -1/4 ; -1/4 2/3 -1/4 ; -1/4 -1/4 2/3]; 

[eigen_vector,eigen_value] = spec(A); 

 

The result of this short SciLab code can be interpreted in the following 
manner. 

 The eigen value matrix will be, 

 
0.166667 0 0

0 0.916667 0
0 0 0.916667

  

 This implies that the eigen values are, 

(0.166667𝑀𝑎2 , 0.916667𝑀𝑎2 , 0.916667𝑀𝑎2) 

 The eigen vector matrix will be, 

 
− 0.5773503 0.1243009 0.8069795
− 0.5773503 − 0.7610152 − 0.2958421
− 0.5773503 0.6367143 − 0.5111375

  

 The eigen vector corresponding to the first eigen value can be written as, 

 
1
1
1
  

 This implies that the direction of principal axis is along 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 . 

This represents the diagonal of the cube and is the symmetry (principal) 

axis of the rotating cube. Similarly the other principal axes can be found 

from the other two eigen vectors. 

 

33) If the cube is rotating about its center, then the moment of inertia tensor will 

be a diagonal matrix and off diagonal elements will be zero. The direction of 

total angular momentum will always be parallel to the angular velocity. The 

elements of the moment of inertia tensor can be obtained in the following 
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manner. 

𝐼𝑥𝑥 =
𝑀

𝑎3
    𝑦2 + 𝑧2 

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 =
1

6
𝑀𝑎2 

𝐼𝑦𝑦 =
𝑀

𝑎3
    𝑥2 + 𝑧2 

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦 =
1

6
𝑀𝑎2  

𝐼𝑧𝑧 =
𝑀

𝑎3
    𝑥2 + 𝑦2 

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 =
1

6
𝑀𝑎2 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = −
𝑀

𝑎3
   𝑥𝑦

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 = 0 

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = −
𝑀

𝑎3
   𝑥𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦 = 0 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = −
𝑀

𝑎3
   𝑦𝑧

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 = 0 

This gives, 

𝐼 =  
𝑀𝑎2

6
 

1 0 0
0 1 0
0 0 1

  

 

34) The graph shown in Figure 1.11 is expected for this exercise. 

 

35) The graph shown in Figure 1.12 is expected for this exercise. 

 

36) The graph shown in Figure 1.13 is expected for this exercise. 
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Figure 1.11: Solution for Exercise 34 

 

 
 

Figure 1.12: Solution for Exercise 35 
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Figure 1.13: Solution for Exercise 36 
 

37) The SciLab program is written below. 

 
minimum_x = 0; 

maximum_x = 1; 

N = 500;                     

x = linspace(minimum_x,maximum_x,N)';      

h = x(2) - x(1);          

 

function y = func(x) 

y = x; 

endfunction 

 

D = ( diag(ones((N-1),1),1) - diag(ones((N-1),1),-1) 

)/(2*h); 

D(1,1) = -1/h;  

D(1,2) = 1/h;  

D(2,1) = -1/(2*h); 

D(N,N-1) = -1/h;  

D(N-1,N) = 1/(2*h);  

D(N,N) = 1/h; 

D*(diag(1-x.^2)*D*func(x)) 

 
 

38) The graph shown in Figure 1.14 is expected for this exercise. 
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Figure 1.14: Solution for Exercise 38 

 

39) The graph shown in Figure 1.15 is expected for this exercise. 

 

 
 

Figure 1.15: Solution for Exercise 39 
 

40) The first three wave functions are shown in Figure 1.16. The energy eigen 

value for these wave functions will be equal to,  
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𝐸0 = 1.3810434,𝐸1 =  4.1560752,𝐸2 =  7.0092436  
 

 
 

Figure 1.16: Solution for Exercise 40 
 

41) The first three wave functions are shown in Figure 1.17. The energy eigen 

value for these wave functions will be equal to,  

𝐸1 = −13.594455,   𝐸2 =  −3.4022647,   𝐸3 =  −1.5123143 
 

 
 

Figure 1.17: Solution for Exercise 41 
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CHAPTER 2 
 

4) The SciLab program is written below. The histogram is shown in Figure 2.44. 

 
data=rand(1,1000,'normal'); //Generate random number  

x = -5:5;  

y = histplot(x,data,style = 2) //Generate histogram 

histplot(x,data,style = 2); //Plot histogram 

plot2d(x(1:length(y))+0.5,y) //Mark the frequency 

 

 
 

Figure 2.44: Solution for Exercise 4 
 

5) The SciLab program is written below. 

 
x = 0:0.3:%pi; 

y = sin(x); 

em = 0.1*sqrt(y); 

ep = 0.1*sqrt(y);  

plot(x,y,'ro-','markersize',15) 

a = gca(); 

a.box='off'; 

errbar(x, y, em, ep);  

h=gce(); 

h.thickness = 2; 

newcolour = 2;  

h.segs_color = newcolour *ones(h.segs_color); 

xgrid(3) 
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6) The SciLab program is written below. The solution is shown in Figure 2.45. 

 
x = [0 0.5 1 1 2 3 3.5 4.51]; 

y = [0 0.51 0.51 0.2 -0.31 -0.25 0.2 0.25]; 

 

data = [x;y]; //Give data set 

x_new = [0.25 0.7 2.3 3.3 4];  

y_new = interpln(data,x_new); //Interpolated values 

plot2d(data(1,:),data(2,:)) //Plot original data 

plot2d(x_new,y_new) //Plot interpolated data 

 
The values of the dependent variable at intermediate points are, 
y_new = 0.255 0.51 -0.292 0.02 0.2247 

 

7) The SciLab program is written below. The solution is shown in Figure 2.46. 

 
x = [0 1.2 2.1 2.9 3.5 4.9 6 7.1]; 

y = [0 0.51 0.51 0.93 0.31 0.15 0.4 0.25]; 

data = [x;y]; //Given data set 

data_smooth=smooth(data,0.1); //Interpolate/smooth data 

plot2d(data(1,:),data(2,:)) //Mark/plot data points 

//Draw smooth curve 

plot2d(data_smooth(1,:),data_smooth(2,:)); 

 
 

8) The SciLab program is written below. The solution is shown in Figure 2.47. 

 
data = rand(1,1000,'normal'); 

x = -5:5; 

//Generate histogram 

y = histplot(x,data,style=2,normalization=%f) 

 

//Plot histogram  

histplot(x,data,style=2,normalization=%f)  

 

//Original data 

data1 = [x(1:length(y))+0.5;y]; 

    

//Smooth data  

data1_smooth = smooth(data1,0.1);    

 

//Plot smooth data 

plot2d(data1_smooth(1,:),data1_smooth(2,:)) 

 

//Mark the frequency 

plot2d(data1(1,:),data1(2,:),5)   
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9) The SciLab program is written below. 

 
x = 0:0.01:2*%pi; 

y = cos(x); 

plot2d(x,y,2) 

title('Cosine 

Wave','fontsize',7,'color','black','fontname','times 

italic','edgecolor','red','backgroundcolor','yellow' ); 

 

 
 

Figure 2.45: Solution for Exercise 6 

 
 

Figure 2.46: Solution for Exercise 7 
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Figure 2.47: Solution for Exercise 8 

 

10) The graph shown in Figure 2.48 is expected. 

 

11) The resultant graph is given in Figure 2.49. 

 

12) The SciLab program is written below. The graph is shown in Figure 2.50. 

 
 

Figure 2.48: Solution for Exercise 10 
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Figure 2.49: Solution for Exercise 11 

 
C = 100d-6; //Value of capacitor (in farad) 

R = 100; //Value of resistor (in Ω) 
tau = C*R; //Time constant 

Vs = 5; //Source voltage 

t = 0: 0.001: 7*tau; //Time range for plotting 

V = Vs * exp(-t/tau); //Voltage across capacitor 

i = (Vs-V)/R; //Current in the circuit 

subplot(211) 

plot2d(t/tau,V/Vs); 

 

subplot(212) 

plot2d(t/tau,i/max(i)); 
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Figure 2.50: Solution for Exercise 12 

 

13) The SciLab program is written below. The graph is shown in Figure 2.51. 

 
function y = dirac(x) 

y = exp((-(x-

a).^(2))/(2.*sigma.*sigma))/sqrt(2*%pi.*sigma.*sigma) 

endfunction 

 

sigma = 0.2; //Standard Deviation 

a = 2; //Shift factor 

x = a-2:0.01:a+2; //Range of x-variable 

z = dirac(x); //Evaluate the function 

plot2d(x,z) //Plot the function 

sigma = 0.1; //Standard Deviation 

z = dirac(x); //Evaluate the function 

plot2d(x,z) //Plot the function 

 
 

14)  The graph shown in Figure 2.52 is expected for this exercise. 
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Figure 2.51: Solution for Exercise 13 

 

 
 

Figure 2.52: Solution for Exercise 14 

 

15) The SciLab program is written below. 

 
x = [1 0 0 1 1]; 

y = [1 1 0 0 1]; 
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z = [0 0 0 0 0]; 

param3d(x,y,z,alpha=75); 

 

x = [1 0 0 1 1]; 

y = [1 1 0 0 1]; 

z = [0.5 0.5 0.5 0.5 0.5]; 

param3d(x,y,z,alpha=75); 

 

x = [1 0 0 1 1]; 

y = [1 1 0 0 1]; 

z = [1 1 1 1 1]; 

param3d(x,y,z,alpha=75); 

 
 

16) The graph shown in Figure 2.53 is expected for this exercise. 

 

 
 

Figure 2.53: Solution for Exercise 16 

 

17) The graph shown in Figure 2.54 is expected for this exercise. 

 

18) The graph shown in Figure 2.55 is expected for this exercise. 

 

19) The graph shown in Figure 2.56 is expected for this exercise. 

 

20) The graph shown in Figure 2.57 is expected for this exercise. 

 

21) The graph shown in Figure 2.58 is expected for this exercise. 
 

22) The graph shown in Figure 2.59 is expected for this exercise. 
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Figure 2.54: Solution for Exercise 17 

 

 
 

Figure 2.55: Solution for Exercise 18 

 

23) The graph shown in Figure 2.60 is expected for this exercise. 

 

24) The SciLab programs are written below. 

Part (a) 

function f = func(vector) 
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f(1) = vector(1) * vector(2); 

f(2) = -vector(2).^3; 

f(3) = (vector(1)-1) * vector(3); 

endfunction 

 

vector = [5 3 8]; 

sum(diag(numderivative(func,vector))) 

 
The answer will be equal to, -20. 
 

Part (b) 

 
function f = func(vector) 

f(1) = vector(1) * vector(1); 

f(2) = vector(2) * vector(2); 

f(3) = vector(3) * vector(3); 

endfunction 

 

vector = [2 1 3]; 

sum(diag(numderivative(func,vector))) 

 
The answer will be equal to, 12. 

 

25) The SciLab programs are written below. 

Part (a) 

 
function f = func(vector) 

f(1) = vector(1) * vector(2).^2; 

f(2) = -vector(1) * vector(2) * vector(3); 

f(3) = vector(1).^2 * vector(3).^2; 

endfunction 

 

vector = [2 1 3]; 

a = numderivative(func,vector) 

A = [a(3,2)-a(2,3) a(1,3)-a(3,1) a(2,1)-a(1,2)] 

 
The answer will be equal to, A = 2   -36   -7 

 

Part (b) 

 
function f = func(vector) 

f(1) = vector(2).^2 * vector(3).^2; 

f(2) = -vector(1) * vector(3); 

f(3) = vector(1) * vector(2); 

endfunction 

 

vector = [2 1 3]; 

a = numderivative(func,vector) 
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A = [a(3,2)-a(2,3) a(1,3)-a(3,1) a(2,1)-a(1,2)] 

 
The answer will be equal to, A = 4    5    -21 

 

 
 

Figure 2.56: Solution for Exercise 19 

 

 
 

Figure 2.57: Solution for Exercise 20 
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Figure 2.58: Solution for Exercise 21 

 

 
 

Figure 2.59: Solution for Exercise 22 
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Figure 2.60: Solution for Exercise 23 
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CHAPTER 3 
 

1) The SciLab program is written below and graph is shown in Figure 3.20. 

 
//Generate a data set having a linear trend and a 

negative slope 

x = linspace(1,10,10);  

n = length(x);      //n = 10 

y = -rand(1,n).*x   //Generate random y-values 

y = y - min(y)    //Rescale the y-axis 

plot2d(x,y)          //Plot the data 

 

//Steps to determine the value of slope and constant 

x1 = sum(x);        // 𝑥𝑖
𝑛
𝑖=1  

x2 = sum(x.*x);       // 𝑥𝑖
2𝑛

𝑖=1  

x1y1 = sum(x.*y);          // 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 

y1 = sum(y);       // 𝑦𝑖
𝑛
𝑖=1  

 

//Define the two matrices 

A = [x2 x1; x1 n]; 

B = [x1y1; y1]; 

C = A\B; 

m = C(1);        //Slope 

c = C(2);          //Constant 

z = x(1)/2:0.01:x(n)+x(1)/2.0; 

fplot2d(z,bestfit)   //Plot the best fit curve 

 

 
 

Figure 3.20: Graph for Exercise 1 
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3) The SciLab program is written below. The best fit curve is shown in Figure 

3.21. 

 
x = linspace(0.1,1,10);    

n = length(x);       

 

//Generate random y-values around 𝑒−3𝑥 

y = %e^(-3*x)+(min(y)*rand(1,n));  

plot2d(x,y)    

 

//Best fit parameters and plot the best fit curve 

[bestfit,m,c] = exponential_fit(x,y) 

plot2d(x,bestfit)    

 
 

Figure 3.21: Graph for Exercise 3 

 

4) The SciLab program is written below and the curve is shown in Figure 3.22. 

 
// Define function for best fit 

function s = bestfit(z) 

s = alpha*(z^m); 

endfunction 

 

n = input("Please enter the value of data points, n = ") 

 

x = [10 20 30 40 50 60 70 80 90 100]; 

y = [55 210 440 794 1205 1812 2451 3172 4022 5020]; 

 

// Calculate  𝑋𝑖
𝑛
𝑖=1 =   log(𝑥𝑖)

𝑛
𝑖=1  
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x1 = 0; 

for i = 1:n; 

    x1 = x1 + log(x(i)); 

end 

 

// Calculate  𝑋𝑖
2𝑛

𝑖=1 =    log(𝑥𝑖) 
2𝑛

𝑖=1  

x2 = 0; 

for i = 1:n; 

    x2 = x2 + (log(x(i)))^2; 

end 

//Calculate  𝑋𝑖𝑌𝑖
𝑛
𝑖=1 =   log(𝑥𝑖)

𝑛
𝑖=1 log(𝑦𝑖) 

x1y1 = 0; 

for i = 1:n; 

    x1y1 = x1y1 + log(x(i))*log(y(i)); 

end 

 

//Calculate  𝑌𝑖
𝑛
𝑖=1 =   𝑙𝑜𝑔(𝑦𝑖)

𝑛
𝑖=1  

y1 = 0; 

for i = 1:n; 

    y1 = y1 + log(y(i)); 

end 

 

//Calculate slope (𝑚 =  𝛽) 
m = (n*x1y1-(x1*y1))/(n*x2-(x1)^2); 

 

//Calculate 𝛼 
alpha = exp(((x2*y1)-(x1*x1y1))/(n*x2 -(x1)^2)); 

 

//Range for plotting and plot the best fit curve 

z= x(1)-x(1)/2:(x(2)-x(1))*0.1:x(n)+1.5*x(1); 

fplot2d(z,bestfit); 

 

//Plot the data points 

for i = 1:n; 

    plot(x(i),y(i),'r-*') 

end 
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Figure 3.22: Graph for Exercise 4 
 

8) The SciLab program is written below. The solution is shown in Figure 3.23. 

x = [2 4 6 8 10 12 14 16 18]; 

y = [0 0.2 1.1 1.2 1 2 1.9 1.8 2.5]; 

plot2d(x, y) 

 

function y = model(x,constant) 

y = constant(1)*x + exp(-constant(2)*x).*sin(x + 

constant(3)); 

endfunction 

 

function err = model_error(constant,z) 

  err = z(2) - model(z(1),constant); 

endfunction  

 

z = [x ; y]; 

constant_trial = [0 1 1.5]'; 

 

[best_fit_constant, err] = datafit(model_error, z, 

constant_trial); 

 

x = linspace(0, 20, 100); 

y = model(x,best_fit_constant); 

plot2d(x, y) 
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Figure 3.23: Solution for Exercise 8 

 

9) The SciLab program is written below. The solution is shown in Figure 3.24. 

 

x = [1 2 3 4 5 6 7 8 9 10 11 12]; 

y = [4.1 3.8 3 1.1 0.9 1.1 1.1 1 2 4.8 5.1 5]; 

plot2d(x, y) 

 

function a = model(x,constant_trial) 

i = 1; 

for y = min(x):0.01:max(x) 

 

if y <= constant_trial(1) then 

    a(i) = constant_trial(2) 

elseif (y>constant_trial(1))&(y<=constant_trial(3)) then 

    m = (constant_trial(2)-

constant_trial(5))/(constant_trial(3)-constant_trial(1)) 

    a(i) = -m*(y-constant_trial(1)) + constant_trial(2); 

elseif (y > constant_trial(3)) &  (y <= 

constant_trial(4)) then 

    a(i) = constant_trial(5); 

elseif (y > constant_trial(4)) & (y<constant_trial(6)) 

then 

    m = (constant_trial(7)-

constant_trial(5))/(constant_trial(6)-constant_trial(4)) 

    a(i) = m*(y-constant_trial(4)) + constant_trial(5); 

else 

    a(i) = constant_trial(7); 
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end 

i = i+1; 

end 

endfunction 

 

function err = model_error(constant,z) 

err = z(2) - model(z(1),constant); 

endfunction  

 

z = [x ; y]; 

constant_trial = [2 4 4 8 1 10 5]'; 

 

[best_fit_constant, err] = datafit(model_error, z, 

constant_trial); 

 

x1 = 0:0.01:13; 

y1 = model(x1,best_fit_constant); 

 

plot2d(x1,y1) 

 
 

 
 

Figure 3.24: Solution for Exercise 9 
 

 
  



  Solutions to Selected Questions 35 

 

CHAPTER 4 
 

1) The exact solution of the differential equation is, 

𝑌 = exp −𝑋  
Figure 4.25 shows the solution of the differential equation obtained by using 

the ‘ode’ in-built function of SciLab. The ‘X’ range is taken to be 0 to 1. The 

SciLab program written for this graph is as follows. 

 
//Define the function for differential equation 

function dy = f(x,y);   

dy = -y; 

endfunction 

 
x(1) = 0;     //Initial value of X 

y(1) = 1;     //Initial value of Y 

final = 1;        //Final value of X 

h = 0.1;         //Step size 

 

j = x(1); 

k = 1; 

while(j<=max(x)); 

    ode_result(k) = ode(y(1),x(1),j,f); 

    j = j+h; 

    k = k+1; 

end 

 

plot2d(x,ode_result) 

 
 

For the same function and initial values, the functions for Euler’s and Runge-

Kutta methods can be loaded by using the following command. 

exec('differentiation.sci',-1) 

 
 

These functions are then invoked through the following commands. 

 
[x,y] = euler(x(1),y(1),h,final); 

plot2d(x,y) 

 
[x,y] = modeuler1(x(1),y(1),h,final); 

plot2d(x,y) 

 
[x,y] = rk2(x(1),y(1),h,final); 

plot2d(x,y) 

 
[x,y] = rk4(x(1),y(1),h,final); 

plot2d(x,y) 
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It is clear from Figure 4.25, that Runge-Kutta methods give more accurate results as 

compared with the Euler’s methods for the same step size. 

 

 
 

Figure 4.25: Solution for Exercise 1 

2) The exact solution of this differential equation is, 

𝑦 = 5𝑒−2𝑡  
Figure 4.26 shows the comparison of the analytical solution with the 

estimates from Euler’s method. The graph corresponding to the analytical 

solution is obtained by using the following commands. 

 
t(1) = 0;     //Initial value of t 

y(1) = 5;     //Initial value of y 

final = 2;       //Final value of t 

 

//Define the function for differential equation 

function ydot = f(t,y) 

ydot = -2*y; 

endfunction 

 
//Plot the analytical solution 
t = 0:0.2:2; 

plot2d(t,y(1)*exp(-2*t)); 
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For the same function and initial values, the function for Euler’s method can 

be loaded using the following command. The function for the Euler’s method 

is then invoked for different step size. 

 
exec('differentiation.sci',-1) 

h = 0.2; 

[t,y] = euler(t(1),y(1),h,final); 

plot2d(t,y) 

 
h = 0.8; 

[t,y] = euler(t(1),y(1),h,final); 

plot2d(t,y,) 

 
 

It is clear from Figure 4.26 that a better estimate of the solution is obtained if 

the step size is small. 

 

3) The exact solution of this differential equation is, 

𝑦 =
1

1 + 𝑒−𝑥
 

Figure 4.27 shows the comparison of the analytical solution with the 

estimates from Euler’s method. The graph corresponding to the analytical 

solution is obtained by using the following commands. 

 
x(1) = -4;     //Initial value of x 

y(1) = 0.018;    //Initial value of y 

final = 4;       //Final value of t 

 

//Define the function for differential equation 

function yprime = f(x,y) 

yprime = exp(x)./((1 + exp(x)).^2); 

endfunction 

 
//Plot the analytical solution 

x = -4:0.4:4; 

plot2d(x,1 ./(1 + exp(-x))) 

 
 

For the same function and initial values, the function for Euler’s method can 

be loaded by using the following command. The function for the Euler’s 

method is then invoked for a step size of 1. 

 
exec('differentiation.sci',-1) 

 

h = 1; 

[x,y] = euler(x(1),y(1),h,final); 

plot2d(x,y) 
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It is clear from Figure 4.27 that Euler’s method gives a large amount of error 

when the step size is large. 

 

 
 

Figure 4.26: Solution for Exercise 2 
 

4) The differential equation taken for a concave down solution curve is, 
𝑑𝑦

𝑑𝑥
= −2𝑥 

The differential equation taken for a concave up solution curve is, 
𝑑𝑦

𝑑𝑥
= 2𝑥 

The solution curves shown in Figures 4.28 - 4.29 are expected for these 
differential equations. 
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Figure 4.27: Solution for Exercise 3 
 

 
 

Figure 4.28: Solution for Exercise 4 
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Figure 4.29: Solution for Exercise 4 

 

5) The procedure to solve the differential equation for the orthogonal curves is 

exactly same as discussed in the text (Section 4.8.2). The solution curves 

shown in Figure 4.30 are expected for this exercise. 

 

 
 

Figure 4.30: Solution for Exercise 5 

 

6) The analytical solution of the differential equation is, 
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𝑥2 + 𝑦2 = 1 
This is equation of a circle and it can also be written in terms of polar 

coordinates. 

𝑥 = sin𝜃 

𝑦 = cos𝜃 
The SciLab program for generating the analytical solution is, 

 
angle = 0:0.2:2*%pi; 

plot2d(sin(angle), cos(angle)); 

 
 

The two first order equations can be written in the form of a function. 

 
function xdot = f1(t,x,y) 

xdot = y; 

endfunction 

 

function ydot = f2(t,x,y) 

ydot = -x; 

endfunction 

 
 

The initial conditions can be defined as, 

 

 
t(1) = 0; 

x(1) = 1; 

y(1) = 0; 

final = 2*%pi; 

h = 0.2; 

 
 

The functional form of the Euler’s method and the Runge-Kutta method can 

be loaded using the following command and are then evoked and the result is 
plotted by using the following commands. 

 
exec('differentiation.sci',-1) 

 

[t,x,y] = euler2(t(1),x(1),y(1),h,final); 

plot2d(x,y); 

 

[x,y,z] = rk42(x(1),y(1),z(1),h,final); 

plot2d(x,y) 

 
 

Figure 4.31 and Figure 4.32 shows the comparative graphs for the Euler’s 

method and the Runge-Kutta method. 
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Figure 4.31: Solution for Exercise 6 

 

7) The SciLab program is written below and the solution curve is shown in 

Figure 4.33. 

 
exec('differentiation.sci',-1) 

time(1) = 0;     //Initial time 

temp(1) = 80;        //Initial temperature 

Ts = 20;       //Temperature of surrounding 

final_time = 100;       //Final time 

h = 0.1;         //Step size 

alpha = 0.02;    

 

function T_dt = f(t,T); 

T_dt = -alpha*(T-Ts); 

endfunction 

 

[x,y] = rk4(time(1),temp(1),h,final_time); 

plot2d(x,y,2) 

 

alpha = 0.04; 

[x,y] = rk4(time(1),temp(1),h,final_time); 

plot2d(x,y,5) 
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Figure 4.32: Solution for Exercise 6 

 

8) The solution curve in Figure 4.34 is expected for the logistic growth model. 

 

9) The analytical solution of the differential equation is, 

𝑦 = 3 cos 𝑥 +  5 sin𝑥 
The second order differential equation can be re-written in the form of 

coupled first order differential equations in the following manner. 

Let, 
𝑑𝑦

𝑑𝑥
= 𝑧 

This implies 

𝑑𝑧

𝑑𝑥
=
𝑑2𝑦

𝑑𝑥2
= −𝑦 

These two equations can be written in the form of a function. 

 
function yprime = f1(x,y,z) 

yprime = z; 

endfunction 

 

function zprime = f2(x,y,z) 

zprime = -y; 

endfunction 
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Figure 4.33: Solution for Exercise 7 

 

 
 

Figure 4.34: Solution for Exercise 8 

 

The initial conditions can be defined as, 

 
x(1) = 0; 

y(1) = 3; 

z(1) = 5; 

final = 3*%pi; 

h = 0.1; 
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The functional form of the Euler’s method and the Runge-Kutta method can 

be loaded by using the following command. 

 
exec('differentiation.sci',-1) 

 
 

These functions are called and the result is plotted by using the following 

commands. 

 
[x,y,z] = euler2(x(1),y(1),z(1),h,final); 

plot2d(x,y); 

 

[x,y,z] = rk42(x(1),y(1),z(1),h,final); 

plot2d(x,y) 

 
 

The analytical solution can be plotted by using the following command. 

 
x = 0:0.1:3*%pi; 

plot2d(x,3*cos(x) + 5*sin(x)); 

 
 

The in-built function of SciLab can be used in the following manner. 

 
y0 = [3;5]; 

 

function dy = f(x,y); 

dy(1) = y(2); 

dy(2) = -y(1); 

endfunction 

 

x = 0:0.1:3*%pi; 

y = ode(y0,0,x,f); 

plot2d(x,y(1,:)); 

 
 

Figures 4.35, 4.36 and 4.37 show the comparative graphs for Euler’s method, 

Runge-Kutta method and the in-built SciLab function respectively. 

 

10) The phase space plot is shown in Figure 4.38. 

 

11) For critically damped case, 𝑐2 = 4𝑚𝑘 

This implies, 𝑐 =   4𝑚𝑘 = 160 
Therefore, damping constant in the following SciLab program is taken to be 

equal to 160. For comparison, over-damped case is taken to be double the 

critical damping and under-damped case is taken to be half the critical 

damping. The graph is shown in Figure 4.39. 
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Figure 4.35: Solution for Exercise 9 

 

 
 

Figure 4.36: Solution for Exercise 9 

 
exec('differentiation.sci',-1) 

 

function x_dot = f1(t,x,y) 

x_dot = y; 

endfunction 
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Figure 4.37: Solution for Exercise 9 

 

 
 

Figure 4.38: Solution for Exercise 10 

 
function y_dot = f2(t,x,y) 

y_dot = -(c*y + k*x)/m; 

endfunction 

 

t0 = 0;      //Initial time 
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x0 = 1;        //Initial position 

xdot_0 = 0;       //Initial velocity 

final = 8;        //Final time 

h = 0.1;         //Step size 

m = 50;     //Mass of the object 

k = 128;        //Spring constant 

 

c = sqrt(160*160/2); 

[t,x,y] = rk42(t0,x0,xdot_0,h,final); 

plot2d(t,x); 

 

c = 160; 

[t,x,y] = rk42(t0,x0,xdot_0,h,final); 

plot2d(t,x); 

 

c = sqrt(2*160*160); 

[t,x,y] = rk42(t0,x0,xdot_0,h,final); 

plot2d(t,x); 

 
 

12) The general form of the second order differential equation is, 

𝑑2𝑦

𝑑𝑥2
+ 𝑓 𝑥 

𝑑𝑦

𝑑𝑥
+ 𝑔 𝑥 𝑦 = 𝑟(𝑥) 

As explained in the text, it is necessary to define the functions 𝑓(𝑥), 𝑔(𝑥) 

and 𝑟(𝑥) for the given differential equation; give the boundary conditions; 

and then call the function for the finite difference method. The following 

SciLab program shows this for part (a) of the question. 

 

 
Figure 4.39: Solution for Exercise 11 
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function def_f = f(x)      //Define function f(x) 

def_f = 0; 

endfunction 

 

function def_g = g(x)      //Define function g(x) 

def_g = 1; 

endfunction 

 

function def_r = r(x)      //Define function r(x) 

def_r = 0; 

endfunction 

 

exec('differentiation.sci',-1);   

a = 0;     //Initial value of x 

b = %pi/2;       //Final value of x 

ya = 1;     //Initial value of y 

yb = 1;       //Final value of y 

h = 0.01;         //Step Size 

 

//Call the function for finite difference method 

[x,y] = boundary(a,b,h,ya,yb,f,g,r); 

 

plot2d(x,y)        //Plot the result 

 
Figure 4.40 shows the solution curve for the given differential equation. 

 

 
 

Figure 4.40: Solution for Exercise 12(a) 

The following graphs are expected for the parts, (b), (c) and (d) of this question. 
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Figure 4.41: Solution for Exercise 12(b) 

 

 
 

Figure 4.42: Solution for Exercise 12(c) 
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Figure 4.43: Solution for Exercise 12(d) 

 

13) The force due to air resistance is proportional to the speed of the object, and it 

acts in the direction opposite to motion. Therefore, the acceleration of the 

freely falling object will be given by, 

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= −𝑔 − 𝛼𝑣 

The SciLab program to determine the velocity profile of the object is written below. 

The velocity-time graph is shown in Figure 4.44. 

 
//Define system of equations for freely falling object 

function xdot = f_1(t,x) 

xdot(1) = x(2); 

xdot(2) = -g; 

endfunction 

 

//Define system of equations for object falling under 

air resistance, 𝛼 is taken to be 0.7 
function xdot = f_2(t,x) 

xdot(1) = x(2); 

xdot(2) = -g-(0.7*x(2)); 

endfunction 

 

g = 9.82;      //Acceleration due to gravity 

height_initial = 100;       //Initial height 

v_initial = 0;      //Initial velocity 

t_initial = 0;     //Initial time 
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t = t_initial:0.3:((v_initial) + 

(sqrt((v_initial*v_initial)+2*g*height_initial)))/g; 

 

//Call the in-built function 

x = ode([height_initial;v_initial],t_initial,t,f_1); 

 

//Plot the velocity profile of freely falling object 

plot2d(t,x(2,:));  

 

//Call the in-built function 

x = ode([height_initial;v_initial],t_initial,t,f_2); 

 

//Plot the velocity profile of object falling under air 

resistance 

plot2d(t,x(2,:)); 

 
 

14) The graph shown in Figure 4.45 is expected for this exercise. 

 

15) The graph shown in Figure 4.46 is expected for this exercise. 

 

16) The graph shown in Figure 4.47 is expected for this exercise. 

 

17) The SciLab program is written below. The solution curve is shown in Figure 
4.48. 

 

 
 

Figure 4.44: Solution for Exercise 13 
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Figure 4.45: Solution for Exercise 14 

 
function ydash = f(x,y) 

ydash(1) = y(2); 

ydash(2) = y(3); 

ydash(3) = 5*sin(2*x) - 3*y(2); 

endfunction 

y_0 = 0; 

ydash_0 = 0; 

ydash_dash_0 = 0; 

x = 0:0.1:48; 

y = ode([y_0 ; ydash_0 ; ydash_dash_0],0,x,f); 

plot2d(x,y(1,:)) 
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Figure 4.46: Solution for Exercise 15 
 

 
 

Figure 4.47: Solution for Exercise 16 
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Figure 4.48: Solution for Exercise 17 

 

18) Based on the notations used in Section 4.8.10.2, the following SciLab 

commands can be used for each of the parts of this question. 

a) To show that the wave functions are orthogonal, use the following SciLab 

commands. The output of each command is given in the table below. 

 

Command Output 

sum(eigenvector(:,1).* eigenvector(:,1)) 1 

sum(eigenvector(:,1).* eigenvector(:,2)) - 6.356D-16 

sum(eigenvector(:,1).* eigenvector(:,3)) 4.642D-16 

 

b) Following SciLab commands can be used to determine the value of Bohr 

radius. 

 

Objective SciLab Command Output 

 Calculate the maximum 

probability 

 Distance at which 

electron probability is 

maximum 

[max_value_1,max_index_1] 

= max(eigenvector (:,1).* 

eigenvector (:,1))  

max_value_1  =  0.0204578   

max_index_1  =  26  

r(max_index_1) = 0.52 

 

c) The following SciLab commands can be used to determine the electron 

probability in the 1s orbital. 
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Objective SciLab Command Output 

Probability that electron 

lies in the range, 

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟   

s = 0; 

for i = 1 : max_index_1; 

s = sum(eigenvector(i,1).* 

eigenvector(i,1)) + s; 

end 

s = 0.3242 

Probability that electron 

lies in the range, 

𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 2𝑟𝐵𝑜𝑟  

probability_range = find(r >= 

r(max_index_1) & r <= 

2*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : 

max(probability_range); 

s = sum(eigenvector(i,1).* 

eigenvector(i,1)) + s; 

end 

s  =  0.4420 

Probability that electron 

lies in the range, 

0 ≤ 𝑟 ≤ 10𝑟𝐵𝑜𝑟  

probability_range = find(r <= 

10*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : 

max(probability_range); 

s = sum(eigenvector(i,1).* 

eigenvector(i,1)) + s; 

end 

s  =  0.9999 

Probability that electron 

lies in the range, 

𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 10𝑟𝐵𝑜𝑟  

probability_range = find(r >= 

r(max_index_1) & r <= 

10*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : 

max(probability_range); 

s = sum(eigenvector(i,1).* 

eigenvector(i,1)) + s; 

end 

s  =  0.6961 

 

d) The following SciLab commands can be used to determine the electron 

probabilities in the 2s orbital. 

 

Objective SciLab Command Output 

Probability that 

electron lies in the 

range, 

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟   

s = 0; 

for i = 1 : max_index_1; 

s = sum(eigenvector(i,2).* eigenvector(i,2)) + 

s; 

end     

s = 0.0344   

Probability that 

electron lies in the 

range, 

4𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 6𝑟𝐵𝑜𝑟  

probability_range = find(r >= 4*r(max_index_1) & r <= 

6*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : max(probability_range); 

s = sum(eigenvector(i,2).* eigenvector(i,2)) + 

s; 

end 

s  =  0.3513 

 
e) The following SciLab commands can be used to determine the electron 

probabilities in the 3s orbital. 
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Objective SciLab Command Output 

Probability that electron lies 

in the range, 

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟   

s = 0; 

for i = 1 : max_index_1; 

s = sum(eigenvector(i,3).* 

eigenvector(i,3)) + s; 

end     

s = 0.0099 

Probability that electron lies 

in the range, 

4𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 6𝑟𝐵𝑜𝑟  

probability_range = find(r >= 

4*r(max_index_1) & r <= 

6*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : 

max(probability_range); 

s = sum(eigenvector(i,3).* 

eigenvector(i,3)) + s; 

end 

s  =  0.0590 

Probability that electron lies 

in the range, 

12𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 14𝑟𝐵𝑜𝑟  

probability_range = find(r >= 

12*r(max_index_1) & r <= 

14*r(max_index_1)); 

s = 0; 

for i = min(probability_range) : 

max(probability_range); 

s = sum(eigenvector(i,3).* 

eigenvector(i,3)) + s; 

end 

s  =  0.1962 

 

19) The SciLab program to determine the behavior of wave function for the 

ground state of electron for different values of screening constant ‘𝑎’ is given 

below. The graph of the wave function is shown in Figure 4.49.  

 
a = 0;         //Lower boundary 

b = 8;         //Upper boundary 

h = 0.02;         //Step size 

n = (b-a)/h;        //Number of intervals 

m = 0.511d6;    //Mass of electron (eV/c
2
) 

hbar = 1973;         //ħ𝑐 (in eV A ) 

e = 3.795;       //Electron charge  in  eV A  
1/2
  

alpha = 2*m/(hbar*hbar); 

a1 = 7;    //Screening constant (in A ) 
V = -alpha*e*e; 

A = zeros(n,n); 

r = zeros(1,n); 

 

r(1) = r(1) + h; 

A(1,1) = 2 + (V*h*h*exp(-r(1)/a1)/r(1)); 

A(1,2) = -1; 

 

for i = 2:n-1; 

    r(i) = r(i-1) + h; 

    A(i,i-1) = -1; 

    A(i,i) = 2 + (V*h*h*exp(-r(i)/a1)/r(i)); 

    A(i,i+1) = -1; 
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end 

 

r(n) = r(n-1) + h; 

A(n,n-1) = -1; 

A(n,n) = 2 + (V*h*h*exp(-r(n)/a1)/r(n)); 

 

[c,d] = spec(A); 

E = diag(d)/(alpha*h*h); 

 

plot2d(r,c(:,1)) 

xgrid(13) 

 
 

Value of ground state energy for different values of screening constant is 

given below. 

Screening Constant = 3A  
Energy = -9.3824434 eV 

 

Screening Constant = 5A  
Energy = - 10.943102 eV 

 

Screening Constant = 7A  
Energy = - 11.662933 eV 

 

 
 

Figure 4.49: Graph for Exercise 19 

 

(20) The following energy eigen values will be obtained if boundary is taken 

between 0 to 16. 
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Energy state Energy eigen values (eV) 

𝑬𝟏 4.14  =
3ħ𝜔

2
  

𝑬𝟐 9.66  =
7ħ𝜔

2
  

𝑬𝟑 15.18  =
11ħ𝜔

2
  

 

22) The SciLab program for an-harmonic oscillator is written below. The wave 

function for the ground state is shown in Figure 4.50. 

 
a = 0;         //Lower boundary 

b = 5;         //Upper boundary 

h = 0.01;         //Step size 

n = (b-a)/h;        //Number of intervals 

m = 940;       //Mass of neutron (in Mev/c
2
) 

hbar = 197.3;         //ħ𝑐 (in MeV-fm) 
k = 100;   //Positive constant (in MeV-fm

-2
) 

b = 30;      //Perturbation factor (in MeV-fm
-3
) 

alpha = 2*m/(hbar*hbar); 

A = zeros(n,n); 

r = zeros(1,n); 

 

r(1) = r(1) + h; 

A(1,1) = 2 + 

(h*h*alpha*((0.5*k*r(1)^2)+((1/3)*b*r(1)^3))); 

A(1,2) = -1; 

 

for i = 2:n-1; 

   r(i) = r(i-1) + h; 

   A(i,i-1) = -1; 

   A(i,i) = 2 + 

(h*h*alpha*((0.5*k*r(i)^2)+((1/3)*b*r(i)^3))); 

   A(i,i+1) = -1; 

end 

 

r(n) = r(n-1) + h; 

A(n,n-1) = -1; 

A(n,n) = 2 + 

(h*h*alpha*((0.5*k*r(n)^2)+((1/3)*b*r(n)^3))); 

 

[c,d] = spec(A); 

E = diag(d)/(alpha*h*h); 

plot2d(r,c(:,1)) 
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Ground state energy for different values of perturbation constant (𝑏) are given 

below. 

B E(1)  (in MeV) 

0 96.526684 

10 100.24487 

30 106.89398 

 

 
 

Figure 4.50: Graph for Exercise 22 

 

23) The SciLab program for the Morse potential is written below. The wave 

function for the ground state is shown in Figure 4.51. 

 
a = 0;         //Lower boundary 

b = 10;         //Upper boundary 

h = 0.01;         //Step size 

n = (b-a)/h;        //Number of intervals 

m = 940d6;        //Mass of neutron (in eV/c
2
) 

hbar = 1973;      //ħ𝑐 (in eV-𝐴 ) 
D = 0.755501;        //Dissociation energy 

aa = 1.44;     //Width of potential 

r0 = 0.131349       //Equilibrium bond distance 

alpha = 2*m/(hbar*hbar); 

 

A = zeros(n,n); 

r = zeros(1,n); 



  Solutions to Selected Questions 61 

 

r(1) = r(1) + h; 

A(1,1) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(1)-

r0)/r(1))))-(exp(-aa*((r(1)-r0)/r(1))))))); 

A(1,2) = -1; 

 

for i = 2:n-1; 

    r(i) = r(i-1) + h; 

    A(i,i-1) = -1; 

    A(i,i) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(i)-

r0)/r(i))))-(exp(-aa*((r(i)-r0)/r(i))))))); 

    A(i,i+1) = -1; 

end 

 

r(n) = r(n-1) + h; 

A(n,n-1) = -1; 

A(n,n) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(n)-

r0)/r(n))))-(exp(-aa*((r(n)-r0)/r(n))))))); 

 

[c,d] = spec(A); 

E = diag(d)/(alpha*h*h); 

 

plot2d(r,c(:,1)) 

 
 

The energy eigen values of the vibrating hydrogen molecule in different 

energy states are given below. 

 

Radial Range 
 𝒂 < 𝑟 < 𝑏  

Energy level 
Energy eigen  

value (eV) 

−5 < 𝑟 < 5 Ground state = E(1) -0.1869 

0 < 𝑟 < 10 

Ground state = E(1) -0.1545 

E(2) -0.1429 

E(3) -0.1388 

E(4) -0.1330 

 

24)  The Lagrangian for damping motion of a simple pendulum shown is given 

by, 

𝐿 =  𝑒𝛼𝑡  
1

2
𝑚𝑙2𝜃 2 −𝑚𝑔𝑙 1 − cos𝜃   

Therefore the Lagrange’s equation of motion becomes, 

𝑒𝛼𝑡  𝜃 + 𝛼𝜃 +
𝑔

𝑙
sin𝜃 = 0 

This implies, 
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𝜃 = −𝛼𝜃 −
𝑔

𝑙
sin𝜃 

The SciLab program is written below. The position-time and the phase space graphs 

are shown in Figures 4.52 and 4.53 respectively. 
 

 
 

Figure 4.51: Graph for Exercise 23 

 
function ydot = f(t,y) 

ydot(1) = y(2); 

ydot(2) = -(g/l)*sin(y(1)) - 0.2*y(2); 

endfunction 

 

l = 1; 

g = 9.82; 

theta_0 = 0.5; 

theta_dot_0 = 1.0; 

t = 0:0.01:40; 

y = ode([theta_0 ; theta_dot_0],0,t,f); 

 

plot2d(t,y(1,:)) 

plot2d(y(1,:),y(2,:)) 

 
 

25) The Lagrangian for spring pendulum is given by, 

𝐿 =  
1

2
𝑚 𝑟 2 +  𝑙 + 𝑟 2𝜃 2 −

1

2
𝑘𝑟2 −𝑚𝑔 𝑙 + 𝑟  1− cos𝜃 + 𝑚𝑔𝑟 

Therefore the Lagrange’s equations of motion becomes, 
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Figure 4.52: Solution for Exercise 24 

 

 
 

Figure 4.53: Solution for Exercise 24 

 

𝑟 =  𝑙 + 𝑟 𝜃 2 + 𝑔 cos𝜃 −
𝑘

𝑚
𝑟  

𝜃 2 = −
2

𝑙 + 𝑟
𝑟 𝜃 −

𝑔

𝑙 + 𝑟
sin𝜃 
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The SciLab program is written below. The spring phase-plane and the 

pendulum phase-plane graphs are shown in Figures 4.54 and 4.55, 

respectively. 

 
function ydot = f(t,y) 

ydot(1) = y(2); 

ydot(2) = (l+y(1))*(y(4).^2) + g*cos(y(3)) - (k/m)*y(1); 

ydot(3) = y(4); 

ydot(4) = -g*sin(y(3))/(l+y(1)) - 2*y(2)*y(4)/(l+y(1)); 

endfunction 

l = 3; 

g = 9.82; 

k = 5; 

m = 3; 

r_0 = 4; 

rdot_0 = 0; 

theta_0 = 0.2; 

theta_dot_0 = 0; 

t = 0:0.1:60; 

y = ode([r_0 ; rdot_0 ; theta_0 ; theta_dot_0],0,t,f); 

plot2d(y(1,:),y(2,:)) 

plot2d(y(3,:),y(4,:)) 

 
 

 
 

Figure 4.54: Solution for Exercise 25 
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Figure 4.55: Solution for Exercise 25 

 

26) The position coordinates of the two masses are, 

 𝑥1 = 𝑙1 sin𝜃1 

 𝑥2 = 𝑙1 sin𝜃1 + 𝑙2 sin𝜃2 

 𝑦1 = −𝑙1 cos𝜃1 

 𝑦2 = −𝑙1 cos𝜃1 − 𝑙2 cos𝜃2 
 

 The kinetic energy of the system is equal to, 

𝐾 =  
1

2
𝑚1 𝑥1 

2 + 𝑦1 
2 +

1

2
𝑚2 𝑥2 

2 + 𝑦2 
2  

 This implies, 

𝐾 =  
1

2
𝑚1𝜃 1

2
𝑙1

2 +
1

2
𝑚2  𝜃 1

2
𝑙1

2 + 𝜃 2
2
𝑙2

2 + 2𝑙1𝑙2𝜃 1𝜃 2 cos 𝜃1 − 𝜃2   

 The potential energy of the system is equal to, 

𝑉 =  − 𝑚1 + 𝑚2 𝑔𝑙1 cos𝜃1 −𝑚2𝑙2𝑔 cos𝜃2   
 The Lagrangian of the system is given by, 

𝐿 = 𝐾 − 𝑉 

 Therefore the Lagrange’s equation of motion will be equal to, 

𝜃1
 =

−𝑚2𝑙1𝜃 1
2

sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃1 + 𝑔𝑚2 sin𝜃2 cos 𝜃1 − 𝜃2 

−𝑚2𝑙2𝜃 2
2

sin 𝜃1 − 𝜃2 −  𝑚1 +𝑚2 𝑔 sin𝜃1

 𝑚1 + 𝑚2 𝑙1 −𝑚2𝑙1 cos2 𝜃1 − 𝜃2 
 

 

𝜃2
 =

𝑚2𝑙2𝜃 2
2

sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃1 + 𝑔 𝑚1 +𝑚2 sin𝜃1 cos 𝜃1 − 𝜃2 

+ 𝑚1 + 𝑚2 𝑙1𝜃 1
2

sin 𝜃1 − 𝜃2 −  𝑚1 + 𝑚2 𝑔 sin𝜃2

 𝑚1 +𝑚2 𝑙2 −𝑚2𝑙2 cos2 𝜃1 − 𝜃2 
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The SciLab program is written below. The graph is shown in Figure 4.56. 

 
function ydot = f(t,y) 

ydot(1) = y(2); 

 

num_1 = -m_2*l_1*(y(2)^2)*sin(y(1)-y(3))*cos(y(1)-y(3)) 

+ g*m_2*sin(y(3))*cos(y(1)-y(3)) - 

m_2*l_2*(y(4)^2)*sin(y(1)-y(3)) - (m_1+m_2)*g*sin(y(1)); 

den_1 = l_1*(m_1+m_2) - m_2*l_1*(cos(y(1)-y(3))^2); 

ydot(2) = num_1/den_1; 

 

ydot(3) = y(4); 

 

num_2 = m_2*l_2*(y(4)^2)*sin(y(1)-y(3))*cos(y(1)-y(3)) + 

g*sin(y(1))*cos(y(1)-y(3))*(m_1+m_2) + 

l_1*(y(2)^2)*sin(y(1)-y(3))*(m_1+m_2) - 

(m_1+m_2)*g*sin(y(3)); 

den_2 = l_2*(m_1+m_2) - m_2*l_2*(cos(y(1)-y(3))^2); 

ydot(4) = num_2/den_2; 

endfunction 

 

g = 9.82; 

l_1 = 1; 

l_2 = 2; 

m_1 = 2; 

m_2 = 1; 

theta_1_0 = %pi; 

theta_1_dot_0 = 0; 

theta_2_0 = %pi/2; 

theta_2_dot_0 = 0; 

 

t = 0:0.01:50; 

y = ode([theta_1_0 ; theta_1_dot_0 ; theta_2_0 ; 

theta_2_dot_0],0,t,f); 

 

x1 = l_1*sin(y(1,:)); 

y1 = -l_1*cos(y(1,:)); 

x2 = l_1*sin(y(1,:))+l_2*sin(y(3,:)); 

y2 = -l_1*cos(y(1,:)) - l_2*cos(y(3,:)); 

 

plot2d(x1,y1) 

 

plot2d(x2,y2) 
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Figure 4.56: Solution for Exercise 26 

 

27) The coordinates of the pendulum attached to a rotating pivot are given by, 

𝑥 = 𝑎 cos𝜔𝑡 + 𝑏 sin𝜃 

𝑦 = 𝑎 sin𝜔𝑡 − 𝑏 cos𝜃 
Here, 

 The center of the pivot is taken as the center of the coordinate system. 

 𝑎 is the radius of the pivot 

 𝜔 is the angular frequency of the rotating pivot 

 𝑏 is the length of the pendulum 

 𝜃 is the angular displacement of the pendulum 
The equation of motion of this system is given by, 

𝜃 =
𝑎

𝑏
𝜔2 cos 𝜃 − 𝜔𝑡 −

𝑔

𝑏
sin𝜃 

The SciLab program is written below. The solution curve is shown is Figure 

4.57. 

 
function ydot = f(t,y) 

ydot(1) = y(2); 

ydot(2) = (a/b)*omega*omega*cos(y(1)-(omega*t)) - 

(g/b)*sin(y(1)) 

endfunction 

 

a = 0.2; 

b = 1; 

omega = 20; 

g = 9.82; 

theta_0 = %pi/6; 
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theta_dot_0 = 0; 

t = 0:0.01:10; 

y = ode([theta_0 ; theta_dot_0],0,t,f); 

plot2d(t,y(1,:)) 

 
 

 
 

Figure 4.57: Solution for Exercise 27 
 

28) Suppose the pendulum of mass 𝑚 and length 𝑙 is attached to a moving pivot 

having mass 𝑀. The pivot is located at a distance 𝑥 from the reference point 

and is moving along the 𝑥-axis. If the angular displacement of the pendulum 

is 𝜃 then the coordinates of the bob of the pendulum are given by,  

𝑥𝑝 = 𝑥 + 𝑙 sin𝜃 

𝑦𝑝 =  −𝑙 cos𝜃 

The Lagrange’s equation of motion is given by, 

𝜃 =  −
𝑥 

𝑙
cos𝜃 −

𝑔

𝑙
sin𝜃 

The SciLab program is written below. For this program it is assumed that the 

pivot is moving such that 𝑥 = 𝑎 cos𝜔𝑡. This implies that 𝑥 = −𝑎𝜔2 cos𝜔𝑡. 
The solution curve is shown in Figure 4.58. 

 
function ydot = f(t,y) 

ydot(1) = y(2); 

ydot(2) = -(g/l)*sin(y(1)) + 

(a*omega*omega*cos(omega*t)*cos(y(1)))/l; 

endfunction 

 

l = 1; 
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g = 9.82; 

a = 0.2; 

omega = 100; 

theta_0 = 0.1; 

theta_dot_0 = 0; 

 

t = 0:0.01:3; 

y = ode([theta_0 ; theta_dot_0],0,t,f); 

plot2d(t,y(1,:)) 

 
 

 
 

Figure 4.58: Solution for Exercise 28 

 
29) The solution to this question is similar to the previous exercise, with the 

exception that pivot is now moving along the y-axis instead of the x-axis. 

 

30) The Lagrange’s equation of motion for this system is, 

𝑥1 =
−𝑔 sin𝜃 cos𝜃

𝑚 +𝑀
𝑚

− cos2 𝜃
 

𝑥2 =
𝑔 sin𝜃

1 −
𝑚 cos2 𝜃
𝑚 + 𝑀

 

The graph shown in Figure 4.59 is expected for this exercise. 
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Figure 4.59: Solution for Exercise 30 
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CHAPTER 5 
 

1) The following SciLab program calculates the given integral by using different 

rules of integration. 

 
exec('integrate.sci',-1);   

function y = f(x) 

y = sin(x); 

endfunction 

 

a = 0;       //Lower limit  

b = %pi/2;       //Upper limit  

 

intg(a,b,f)  

integrate('f(x)','x',a,b) 

 

//Even number of intervals have been taken only for 

comparison of the trapezoidal method with the Simpson’s 

1/3 Rule 

h = (b-a)/2;    

Y = trapezoidal(f,a,b,h) 

 

Y = simpson_1_3(f,a,b,h) 

 

h = (b-a)/3;     //Step size for Simpson’s 3/8 Rule 

Y = simpson_3_8(f,a,b,h) 

 
 

The values of the integral from different methods and different step sizes have been 

tabulated in Table 5.4. 

 

Table 5.4: Result for Exercise 1 

 

Method Step size Value of the integral 

In-built Function – intg  1 

In-built Function – Integrate  1 

Trapezoidal Rule 

𝑏 − 𝑎

2
 0.9480594 

𝑏 − 𝑎

10
 0.9979430 
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Method Step size Value of the integral 

Simpson’s 1/3 Rule 

𝑏 − 𝑎

2
 1.0022799 

𝑏 − 𝑎

10
 1.0000034 

Simpson’s 3/8 Rule 

𝑏 − 𝑎

3
 1.0010049 

𝑏 − 𝑎

30
 1.0000001 

 

2) Suppose the definite integral to be evaluated is, 

 𝑥3

4

0

𝑑𝑥 

The SciLab program is written below and the significance of step size is 

shown in Figures 5.12 and 5.13. 

 
exec('integrate.sci',-1);   

 

a = 0;       //Lower limit 

b = 4;       //Upper limit 

h = 2;         //Number of intervals 

step = (b-a)/h;        //Step size 

 

for i = 1:h      //Loop for plotting the trapezoids 

    if pmodulo(i,2) == 0 then 

        j = 4; 

    elseif pmodulo(i,2) == 1 then 

        j = 7; 

    end  

    x1 = a+(step*(i-1)); 

    x2 = a+(step*i); 

    y1 = x1^3; 

    y2 = x2^3; 

    xpts = [x1, x2, x2, x1]; 

    ypts = [y1, y2, 0, 0]; 

    scf(0); 

    plot2d(x1,y1); 

    xfpoly(xpts,ypts,j); 

end 

 

x = a:0.01:b;       //x-range for plotting 

plot2d(x,x.^3)          //Plot the function 
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Figure 5.12: Graph for solution of Exercise 2 

 

The analytical solution of the given integral is equal to 64. But trapezoidal method 

gives a value of 80 when the entire interval is divided into 2 sub-intervals as shown 

in Figure 5.12.  It clearly shows that a large step size in this case results into over-

estimation of the value of integral.  A more accurate result is obtained if the number 

of sub-intervals is increased to 8 (shown in Figure 5.13). 

 

 
 

Figure 5.13: Graph for solution of Exercise 2 
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3) According to the Debye’s model, the molar specific heat is given by, 

𝐶𝑣 = 9𝑁𝑘 
𝑇

𝑇𝐷
 

3

 
𝑥4𝑒𝑥

 𝑒𝑥 − 1 2

𝑇𝐷
𝑇 

0

 𝑑𝑥 

The following SciLab program plots the molar specific heat of the metal on 

the y-axis and temperature on the x-axis. The graph is shown in Figure 5.14. 

In this program, 

 The temperature is varied from 0.5 K to about 3 times the higher Debye 

temperature, i.e. from 0.5 K to 900 K. 

 At high temperatures, the Debye’s formula approaches the Dulong-Petit 

law, according to which the molar specific heat is equal to  3𝑁𝑘 =
24.94 𝐽𝐾−1. 

 
function [Cv] = DB(T)    

m = integrate('(y**4)*exp(y)/((exp(y)-1)^2)','y',0,TD/T) 

Cv = 9*m*N*k*(T/TD)^3;   

endfunction 

 

k = 1.381e-23;     //Boltzmann constant (in J/K) 

N = 6.022e23;     //Avogadro’s number 

 

n = input("Enter the number of elements for the graph : 

") 

 

for i = 1:n; 

    element = input("Enter the name of the element : 

","string"); 

    TD = input("Enter the Debye temperature (in Kelvin) 

: "); 

    x = [0.5 : 0.1 : 900.0]; 

    fplot2d(x,DB); 

    A(i) = string(element); 

end 

 

legend(A); 

 
 

The input parameters are written below, 
Enter the number of elements for the graph : 2 

Enter the name of the element : Copper 

Enter the Debye temperature (in Kelvin) : 340 

Enter the name of the element : Sodium 

Enter the Debye temperature (in Kelvin) : 157 
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Figure 5.14: Graph for Exercise 3 

 

4) According to the Debye’s model, the molar specific heat is given by, 

𝐶𝑣 = 9𝑁𝑘 
𝑇

𝑇𝐷
 

3

 
𝑥4𝑒𝑥

 𝑒𝑥 − 1 2

𝑇𝐷
𝑇 

0

 𝑑𝑥 

The following SciLab program plots the molar specific heat of the metal on 

the y-axis and  
𝑇

𝑇𝐷
  on the x-axis. The graph is shown in Figure 5.15. In this 

program, 

 The temperature is varied 0.01𝑇𝐷  to 3𝑇𝐷 . This implies that the values on 
the x-axis range from 0.01 to 3.0. 

 This graph shows that if the x-axis is in terms of  
𝑇

𝑇𝐷
, then the curves for 

copper and sodium overlap. 

 
function [Cv] = DB(alpha)    

m = integrate('(y**4)*exp(y)/((exp(y)-

1)^2)','y',0,1.0/alpha) 

Cv = 9*m*N*k*(alpha)^3;   

endfunction 

 

k = 1.381e-23;     //Boltzmann constant (in J/K) 

N = 6.022e23;     //Avogadro’s number 

n = input("Enter the number of elements for the graph : 

") 

 

for i = 1:n 
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    element = input("Enter the name of the element : 

","string"); 

    TD = input("Enter the debye temperature (in Kelvin) 

: "); 

    x = [0.01 : 0.01 : 3.0]; 

    fplot2d(x,DB); 

    A(i) = string(element); 

end 

 

legend(A); 

 
 

The input parameters are written below, 
Enter the number of elements for the graph : 2 

Enter the name of the element : Copper 

Enter the debye temperature (in Kelvin) : 340 

Enter the name of the element : Sodium 

Enter the debye temperature (in Kelvin) : 157 

 

 
 

Figure 5.15: Graph for Exercise 4 

 

7) The SciLab program is written below.  

The diffraction patterns for different widths of the slit are shown in Figures 

5.16 (a – d). 

 
function y = f1(x)   //Fresnel’s Integral 

y = cos(%pi*x*x/2); 

endfunction 
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function y = f2(x)   //Fresnel’s Integral 

y = sin(%pi*x*x/2); 

endfunction 

 

slit = 1;                 //∆𝑣 
i = 1; 

for v = -slit:0.01:2*slit; 

    v1(i) = v; 

    x_up(i) = integrate('f1(x)','x',0,v); 

    y_up(i) = integrate('f2(x)','x',0,v); 

    x_down(i) = integrate('f1(x)','x',0,slit-v); 

    y_down(i) = integrate('f2(x)','x',0,slit-v); 

    intensity(i) = (x_up(i)+x_down(i))^2 + 

(y_up(i)+y_down(i))^2; 

i = i+1; 

end 

plot2d(v1-(slit/2),intensity); 

 
 

 
 

Figure 5.16 (a): Fresnel’s Diffraction pattern due to slit of width 1 

 



78 Advanced Programming in SciLab  

 

 
 

Figure 5.16 (b): Fresnel’s Diffraction pattern due to slit of width 2 

 

 
 

Figure 5.16 (c): Fresnel’s Diffraction pattern due to slit of width 3 
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Figure 5.16 (d): Fresnel’s Diffraction pattern due to slit of width 4 

 

8) The SciLab program is written below. The diffraction patterns for different 

widths of the wire are shown in Figures 5.17(a – d). 

 
function y = f1(x)   //Fresnel’s Integral 

y = cos(%pi*x*x/2); 

endfunction 

 

function y = f2(x)   //Fresnel’s Integral 

y = sin(%pi*x*x/2); 

endfunction 

 

slit = 1;                  //∆𝑣 
i = 1; 

for v = -4.4:0.01:slit+4.4; 

    v1(i) = v; 

    x_up(i) = integrate('f1(x)','x',0,v); 

    y_up(i) = integrate('f2(x)','x',0,v); 

    x_down(i) = integrate('f1(x)','x',0,slit-v); 

    y_down(i) = integrate('f2(x)','x',0,slit-v); 

    intensity(i) = 0.5*((1-x_up(i)-x_down(i))^2 + (1-

y_up(i)-y_down(i)))^2; 

    i = i+1; 

end 

 

plot2d(v1-(slit/2),intensity); 
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Figure 5.17 (a): Fresnel’s Diffraction due to a wire of width 1 

 

 
 

Figure 5.17 (b): Fresnel’s Diffraction due to a wire of width 2 
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Figure 5.17 (c): Fresnel’s Diffraction due to a wire of width 3 

 

 
 

Figure 5.17 (d): Fresnel’s Diffraction due to a wire of width 4 

 

11) The SciLab program for differentiation of a triangular wave is written below. 

The graph is shown in Figure 5.18. Note that periodic functions will be 

discussed in detail in the Chapter on Fourier analysis. 

 
period = 2*%pi;        //Period of triangular wave 
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function a = periodic(f,T,x)   //Periodic function 

if (x >= 0) & (x <= T) then 

    a = f(x);  

elseif x < 0 then 

    x_new = x + T; 

    a = periodic(f,T,x_new); 

elseif x > T then 

    x_new = x - T; 

    a = periodic(f,T,x_new); 

end 

endfunction 

function y = f(x)       //Triangular wave 

if x < period*0.5 then 

    y = x; 

else 

    y = period-x 

end 

endfunction  

x = [0:0.01:2*period];     //Range of ‘x’ variable 

for i = 1:length(x) 

    y(i) = periodic(f,period,x(i));  

end 

dy = diff(y)/0.01;      //Differentiation 

x1 = x(1:$-1); 

plot2d(x1,dy)       //Plot the first derivative 

plot2d(x,y')   //Plot the triangular wave 

 
 

 
 

Figure 5.18: Solution of Exercise 11 
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12) The SciLab program is written below. The displacement, velocity and 

acceleration profiles are shown in Figure 5.19. 

 
t = [0:0.01:1]; 

 

displacement = 5*t.^3 + t.^2 + 1.0; 

velocity = diff(displacement)/0.01; 

acceleration = diff(velocity)/0.01; 

 

t1 = t(1:$-1); 

t2 = t1(1:$-1); 

 

plot2d(t,displacement) 

plot2d(t1,velocity) 

plot2d(t2,acceleration) 

 
 

 
 

Figure 5.19: Solution for Exercise 12 

 

13) The output graph is shown in Figure 5.20. 
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Figure 5.20: Solution for Exercise 13 
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CHAPTER 6 
 

1) The SciLab program is written below and the graph is shown in Figure 6.10. 

 
i = -1; 

j = 0; 

for n = 1:3 

    x = 0.001:0.5:10; 

    i = i+1; 

    j = j+1; 

    y = besselj(i,x); 

    plot2d(x,y) 

end 

 

 
 

Figure 6.10: Solution of Exercise 1 

 

2) The SciLab program is written below. 

 
function y = J_alpha(alpha, x) 

series = 0; 

for n = 0:10;  

    series_alpha = ( ((-1)^n)/(factorial(n)*factorial(n 

+ alpha)) )*(x/2)^(2*n); 

    series = series + series_alpha; 

end 

y = ((x/2)^alpha).*series; 

endfunction 
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The result is given below. 
J_alpha(0,1) = 0.7651977 

J_alpha(0,2) = 0.2238908 

 

3) The interpolated value of Bessel functions can be determined by using the 

following Newton’s forward difference formula for interpolation. 

𝑦𝑛  𝑥 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!
∆2𝑦0+. . +

𝑝 𝑝 − 1 . . (𝑝 − 𝑛 + 1)

𝑛!
∆𝑛𝑦0 

Here, 

 A range of data points  𝑥0 ,𝑦0 ,  𝑥1 ,𝑦1 ,  𝑥2 ,𝑦2 …   𝑥𝑛 ,𝑦𝑛   is given such 

that the values of 𝑥 are equidistant.  

 Therefore the step size is  = 𝑥1 − 𝑥0 = 𝑥2 − 𝑥1 and so on. 

 It is required to determine an interpolated value at a random value of 𝑥 

lying in the given range. This value is labeled as 𝑦𝑛  𝑥 . 

 Therefore, 𝑝 =  
𝑥−𝑥0


 

 ∆𝑦0 corresponds to the first forward difference. 

 ∆2𝑦0  corresponds to difference of the first forward differences. It is 

therefore called as the second forward difference. 

 ∆𝑛𝑦0 corresponds to 𝑛𝑡  forward difference 

The SciLab program for determining the value of 𝐽0 9.95  is written below. 

 
x = [5,6,7,8,9,10,11,12]; 

for i = 1:length(x); 

    y(1,i) = besselj(0,x(i)); 

end 

for i = 2:length(x); 

    for j = 1:(length(x)-(i-1)); 

        y(i,j) = y(i-1,j+1)-y(i-1,j); 

    end 

end 

x_given = 9.95; 

h = x(2) - x(1); 

p = (x_given - x(1))/h;       

sum = y(1,1); 

m = 1; 

for i = 2:length(x); 

    m = m*(p-i+2) 

    sum = sum + ((m*y(i,1))/factorial(i-1)); 

end 

mprintf("\n Interpolated value of Bessel function at x = 

"+string(x_given)+" is equal to %f",sum); 

mprintf("\n Actual value of Bessel function at x = 

"+string(x_given)+" is equal to %f",besselj(0,x_given)); 

 
 

The result is as follows. 
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Interpolated value of Bessel function at x = 9.95 is 

equal to -0.243471  

Actual value of Bessel function at x = 9.95 is equal to 

-0.243450  

 

For 𝐽0 25.2 , change the x-range to equally spaced values around 25.  

The result will be as follows. 
Interpolated value of Bessel function at x = 25.2 is 

equal to 0.119655  

Actual value of Bessel function at x = 25.2 is equal to 

0.119157  

 

4) The SciLab program is written below. 

p = zeros(5,1);  

for order = 1:5;  

   p(order) = legendre_poly_gamma(order,'x');  

end;  

 
 

The roots of these polynomials can be obtained by using the in-built SciLab function, 

‘roots’. The result is tabulated below (Table 6.3). 

 

Table 6.3: Result for Exercise 4 

 

roots(p(1)) 0.   

roots(p(2)) 
- 0.5774   

0.5774  

roots(p(3)) 

- 0.7746   

0.7746   

0   

roots(p(4)) 

- 0.8611   

0.8611   

- 0.3400   

0.3400   

roots(p(5)) 

 

- 0.9062   

- 0.5385   

0.9062   

0.5385   

0        
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CHAPTER 7 
 

1) The SciLab program is written below. The graph is shown in Figure 7.21. 

 
exec('fourier.sci',-1); 

period = 4;       //Periodicity 

function y = f(x)     //Periodic function 

if x < 0 then 

    y = x; 

else 

    y = -x 

end 

endfunction  

x = [-2*period : 0.01 : 2*period]; 

for i = 1:length(x) 

    y(i) = periodic1(f,0.5*period,x(i));  

end 

plot2d(x,y') 

 
 

2) The SciLab program is written below. 

 
exec('fourier.sci',-1) 

period = 10;       //Periodicity 

function y = f(x) 

if (x > -0.25*period) & (x < 0.25*period) then 

    y = 0.5; 

else 

    y = 0 

end 

endfunction  

x = [-1.5*period:0.01:1.5*period]; 

for i = 1:length(x) 

    y(i) = periodic1(f,0.5*period,x(i));  

end 

plot2d(x,y) 

 

 



  Solutions to Selected Questions 89 

 

 
 

Figure 7.21: Solution for Exercise 1 

 

3) The SciLab program is written below. The graph is shown in Figure 7.22. 

 
exec('fourier.sci',-1); 

period = 4;       //Periodicity 

function y = f(x)     //Periodic Function 

y = x; 

endfunction  

x = [-2*period : 0.01 : 2*period]; 

for i = 1:length(x) 

    y(i)= periodic1(f,0.5*period,x(i));  

end 

plot2d(x,y') 

 
 

5) The SciLab program is written below. The Fourier series expansion is shown 

in Figure 7.23. The value of Fourier series coefficients 𝑎0  and 𝑏𝑛  will be 

equal to zero. The values of other coefficients determined from the program 

have been given in Table 7.3.  

 
exec('fourier.sci',-1); 

w = %pi;      //Base angular frequency 

period = (2*%pi)/w;      //Base period 

n = 5;         //Number of harmonics 

x = 0:0.01:2*period;        //Range for plotting 

function y = f(x);       //Define the function 

 y = cos(w*x) + cos(2*w*x); 

endfunction  

plot2d(x,f(x));     //Plot the function 
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[a0,a,b] = fourier2(period,n,f); 

 
 

Table 7.3: Fourier coefficients for Exercise 5 

 

n 𝒂𝒏 

1 1 

2 1 

3 0 

4 0 

5 0 

 

 
 

Figure 7.22: Solution for Exercise 3 

 

7) The SciLab program is written below and the harmonics are shown in Figure 

7.24. 

 
exec('fourier.sci',-1); 

function y = f(x) 

y = sign(sin(2*%pi*(1/(2*%pi))*x)); 

endfunction 

period = 2*%pi; 

x = 0:0.01:2*period; 

plot2d(x,f(x) 
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n = 1; 

[a0,a,b] = fourier2(period,n,f); 

n = 3; 

[a0,a,b] = fourier2(period,n,f); 

 
 

 
 

Figure 7.23: Solution for Exercise 5 

 

The square wave is an odd function. Therefore the Fourier series coefficients, 𝑎0 and 

𝑎𝑛  will be equal to zero. The other coefficients are given in Table 7.4. For a square 

wave having amplitude (A), these coefficients are in accordance with the 

theoretically expected values given by, 

𝑏𝑛 =   
4𝐴

𝑛𝜋
     if n is odd

0          if n is even

  

 

From Figure 7.24, it is clear that, 

 Addition of higher order harmonics gives a better approximation of the original 

function. 

 Only odd harmonics are present in this approximation. This is due to the 

symmetric nature of the function. 

 

Table 7.4: Fourier coefficients for Exercise 7 

 

n 𝒃𝒏 

1 1.2732 
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n 𝒃𝒏 

2 0 

3 0.4244 

 

 
 

Figure 7.24: Solution for Exercise 7 

 

9) The SciLab program is written below. The Fourier series expansion is shown 

in Figure 7.25. 

 
period = 2;  

function a = periodic(f,T,x) 

if (x >= 0) & (x <= T) then 

    a = f(x);  

elseif x < 0 then 

    x_new = x + T; 

    a = periodic(f,T,x_new); 

elseif x > T then 

    x_new = x - T; 

    a = periodic(f,T,x_new); 

end 

endfunction 

 

function y = f(x) 

if x < period*0.2 then 

 y = 5*x; 

elseif x < period*0.8 then 
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 y = 2 

else 

 y = 2-5*(x-1.6) 

end 

endfunction  

 

x = [0:0.01:2*period]; 

 

for i = 1:length(x) 

    y(i) = periodic(f,period,x(i));  

end 

plot2d(x,y') 

 

n = 7; 

[a0,a,b] = fourier2(period,n,f); 

 
 

 
 

Figure 7.25: Solution for Exercise 9 
 

12) The SciLab program is written below. The Fourier Transform is shown in 

Figure 7.26. 

 
sample_rate = 100; 

i = 1; 

for t = -1:1/sample_rate:1; 

    time(i) = t; 

    func(i) = sin(20*%pi*t)/exp(2*%pi.*t.*t); 

    i = i+1; 

end 
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subplot(211) 

plot2d(time,func) 

X = fft(func); 

N = length(time); 

f = 0:40;  

subplot(212) 

plot2d(f,abs(X(1:length(f)))) 

 
 

 
 

Figure 7.26: Solution for Exercise 12 
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CHAPTER 8 
 

1) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

A = [1 2 11 ; 1 -1 5]; 

 
The Gauss-Seidel method will not converge.  

 

Part (b) 

 
exec('numerical_techniques.sci',-1) 

A = [3 1 1 8 ; 1 5 -3 2 ; 2 -1 4 12];  

 
The solution will be equal to 1, 2 and 3. 

 

Part (c) 

 
exec('numerical_techniques.sci',-1) 

A = [2 4 6 14 ; 3 -2 1 -3 ; 4 2 -1 -4];  

 
The Gauss-Seidel method will not converge.  

 

2) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

A = [4 -2 ; 2 1]; 

B = [6 ; 45]; 

gauss_elimination(A,B) 

 
The answer will come out to be, 𝑥 = 12,   𝑦 = 21 
 

Part (b) 

 
exec('numerical_techniques.sci',-1) 

A = [6 -3 ; 1 5]; 

B = [-21 ; 46]; 

gauss_elimination(A,B) 

 
The answer will come out to be, 𝑥 = 1,   𝑦 = 9 
 

Part (c) 

 
exec('numerical_techniques.sci',-1) 

A = [1 1 -1 ; 4 -1 5 ; 3 2 -2]; 

B = [6 ; 8 ; 14]; 
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gauss_elimination(A,B) 

 
The answer will come out to be, 𝑥 = 2,   𝑦 = 5, 𝑧 = 1 
 

Part (d) 

 
exec('numerical_techniques.sci',-1) 

A = [0 2 3 ; 1 0 -2 ; 4 3 0];  

B = [13 ; -5 ; 10]; 

gauss_elimination_pivot(A,B) 

 
The answer will come out to be, 𝑥 = 1,   𝑦 = 2, 𝑧 = 3 

 

Part (e) 

 
exec('numerical_techniques.sci',-1) 

A = [1 3 0 ; 1 0 3 ; 0 2 1];  

B = [9 ; -3 ; 2]; 

gauss_elimination_pivot(A,B) 

 
The answer will come out to be, 𝑥 = 3,   𝑦 = 2, 𝑧 = −2 

 
Part (f) 

 
exec('numerical_techniques.sci',-1) 

A = [1 1 0 ; 0 1 1 ; 1 0 1];  

B = [3 ; 5 ; 4]; 

gauss_elimination_pivot(A,B) 

 
The answer will come out to be, 𝑥 = 1,   𝑦 = 2, 𝑧 = 3 

 
3) The SciLab program is written below. 

 
exec('numerical_techniques.sci',-1) 

A = [3 4 0 ; 6 8 2 ; 1 1 3]; 

gauss_inverse(A) 

 
The answer will come out to be, 

𝐴−1 =  
11 −6 4
−8 4.5 −3
−1 0.5 0

  

 

4) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

 

function func = f(x) 



  Solutions to Selected Questions 97 

 

func = 5*x + log(x) - 100 

endfunction 

 

Newton_Raphson(15,1e-4,1e-4) 

 
The root will be equal to 19.406875 

 

Part (b) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = %e^x - x.^3 

endfunction 

 

Newton_Raphson(3,1e-4,1e-5) 

Newton_Raphson(1.5,1e-4,1e-5) 

 
Roots are equal to 4.536404 and 1.857184 

 

Part (c) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = 2.^x - x.^2 

endfunction 

 

Newton_Raphson(-1,1e-4,1e-5) 

Newton_Raphson(1,1e-4,1e-5) 

Newton_Raphson(3,1e-4,1e-5) 

 
Roots are equal to -0.766663, 2.000000 and 4.000000 

 

Part (d) 

 
exec('numerical_techniques.sci',-1) 

function f = f(x) 

f = x.*cos(x) + sin(x) 

endfunction 

 

Newton_Raphson(-0.5,1e-4,1e-5) 

Newton_Raphson(1,1e-4,1e-5) 

Newton_Raphson(3,1e-4,1e-5) 

Newton_Raphson(7,1e-4,1e-5) 

Newton_Raphson(10,1e-4,1e-5) 

Newton_Raphson(13,1e-4,1e-5) 

 



98 Advanced Programming in SciLab  

 

The first few positive roots are equal to 0.000000, 2.028748, 4.913147, 

7.978699, 11.085510 and 14.207458. 

 

5) The SciLab program is written below. The graph is shown in Figure 8.5. 

 
exec('numerical_techniques.sci',-1) 

 

function func = f(x)       //Define the function 

func = x.*tan(x) - 1 

endfunction 

 

x = 0:0.1:8;       //x-range for plotting 

plot2d(x,f(x))      //Plot the function 

 

Bisection_Method(0.5,1.5,100,1d-4); 

Bisection_Method(3,4,100,1d-4); 

Bisection_Method(6,7,100,1d-4); 

 

Secant_Method(0.5,1.5,1e-4) 

Secant_Method(3,4,1e-4) 

Secant_Method(6,7,1e-4) 

 

Regula_Falsi_Method(0.5,1.5,1e-4) 

Regula_Falsi_Method(3,4,1e-4) 

Regula_Falsi_Method(6,7,1e-4) 

 

Newton_Raphson(0.5,1e-4,1e-4) 

Newton_Raphson(3,1e-4,1e-4) 

Newton_Raphson(6,1e-4,1e-4) 

 
The roots determined from different methods are given in Table 8.2. 

 

Table 8.2: Result for Exercise 5 

 

Method Approximate Root 

Bisection Method 

0.860291 

3.425598 

6.437317 

Secant Method 

0.860334 

3.425618 

6.437298 
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Method Approximate Root 

Regula Falsi Method 

0.860305 

3.425602 

6.437292 

Newton Raphson Method 

0.860334 

3.425621 

6.437304 

6) The SciLab program is written below. The graphs are shown in Figure 8.6. 

 
exec('numerical_techniques.sci',-1) 

 

function func = f(x) 

func = 2*sin(x) - x 

endfunction 

 

Newton_Raphson(1.5,1e-4,1e-4) 

 

x = 0:0.1:3; 

 

plot2d(x,x) 

plot2d(x,2*sin(x)) 

plot2d(x,f(x)) 

plot2d([1.895494,1.895494],[0,1.895494],13) 

 
The root will be equal to 1.895494 
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Figure 8.5: Solution for Exercise 5 

 

7) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = x.^2 - 3 

endfunction 

Bisection_Method(1,2,100,1d-6); 

Newton_Raphson(1,1e-4,1e-4) 

Secant_Method(1,2,1e-2) 

Regula_Falsi_Method(0,1,1e-6) 
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Figure 8.6: Solution for Exercise 6 

 

Part (b) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = 4.*x.^2 - 3 

endfunction 

 

Bisection_Method(0,1,100,1d-6); 

Newton_Raphson(1,1e-4,1e-5) 

Secant_Method(0,1,2,1e-4) 

Regula_Falsi_Method(0,1,1e-6) 

 
 

Part (c) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = x.^3 - 2 

endfunction 

 

Bisection_Method(1,2,100,1d-5); 

Newton_Raphson(1,1e-4,1e-5) 

Secant_Method(1,2,1e-4) 

Regula_Falsi_Method(0,1,1e-6) 
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Part (d) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = x.^4 – 0.8 

endfunction 

 

Bisection_Method(0,1,100,1d-6); 

Newton_Raphson(1,1e-4,1e-5) 

Secant_Method(1,2,1e-4) 

Regula_Falsi_Method(0,1,1e-6) 

 
 

Part (e) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = x.^5 – 5 

endfunction 

 

Bisection_Method(1,2,100,1d-6); 

Newton_Raphson(1,1e-4,1e-5) 

Secant_Method(1,2,1e-4) 

Regula_Falsi_Method(0,1,1e-6) 

 
 

8) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = 2.*x.^3 - x.^2 - 5*x + 1 

endfunction 

 

Bisection_Method(-2,0,100,1d-4); 

Bisection_Method(0,1,100,1d-4); 

Bisection_Method(1,2,100,1d-4); 

 

Newton_Raphson(-2,1e-4,1e-5) 

Newton_Raphson(0,1e-4,1e-5) 

Newton_Raphson(1.5,1e-4,1e-5) 

 
The three roots are equal to, -1.454773, 0.195374 and 1.759408 

 

Part (b) 
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exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

    f = 5.*x.^4  - 13*x.^3 - 1 

endfunction 

 

Bisection_Method(-2,0,100,1d-4); 

Bisection_Method(0,1,100,1d-4); 

 

Newton_Raphson(-0.5,1e-4,1e-5) 

Newton_Raphson(1,1e-4,1e-5) 

 
The roots are equal to -0.405212 and 2.611176. 

 
9) The SciLab programs are written below. 

Part (a) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = (3.*x.*x - 1)/2.0 

endfunction 

 

Bisection_Method(0,1,100,1d-4); 

 
The positive root is equal to 0.577332 

 

Part (b) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = (5.*x.^3 - 3.*x)/2.0 

endfunction 

 

Bisection_Method(-0.2,0.2,100,1d-4); 

Bisection_Method(0.1,1,100,1d-6); 

 
The positive roots are equal to 0.000000 and 0.774597 

 

Part (c) 
 

exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = (35.*x.^4 - 30.*x.^2 + 3)/8.0 

endfunction 
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Bisection_Method(0,0.5,100,1d-6); 

Bisection_Method(0.5,1,100,1d-6); 

 
The positive roots are equal to 0.339980 and 0.861136 

 

Part (d) 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(x) 

f = (63.*x.^5 - 70.*x.^3 + 15*x)/8.0 

endfunction 

 

Bisection_Method(0,0.6,100,1d-6); 

Bisection_Method(0.2,0.6,100,1d-6); 

Bisection_Method(0.6,1,100,1d-6); 

 
The positive roots are equal to 0.000000, 0.538470 and 0.906181. 

 

10) The velocity of the object is given by, 

𝑣 𝑡 = 3𝑡2 − 81 
Therefore, in order to find the time at which the velocity becomes equal to 

zero, we will have to determine the root of the following equation, 

𝑡2 − 27 = 0 
The SciLab program is written below. 

 
exec('numerical_techniques.sci',-1) 

 

function f = f(t) 

f = t.^2  - 27 

endfunction 

 

Newton_Raphson(5,1e-4,1e-5) 

 
 

 




