
ADVANCED PROGRAMMING IN SCILAB

Chapterwise Solutions

2 Advanced Programming in SciLab

CHAPTER 1

1) It will give an error of ‘Inconsistent multiplication’.

2) The correct answers are,

 a) 4. 10. 18.

 b) 32.

 c) 4. 5. 6.
 8. 10. 12.

 12. 15. 18.

3) The command will print the elements of all the rows and columns.
1. 2. 3.
4. 5. 6.

4) B = 8.84 9.32 3.61

5) B = 8. 9. 3.

6) The result of the operations is tabulated in Table 1.6.

Table 1.6: Solution for Exercise 6

𝐀 =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

SciLab Command Output

A(1,:) = 2*A(1,:)

A =

2. 4. 6.

4. 5. 6.

7. 8. 9.

A(1,:) = A(1,:) + A(2,:)

A =

5. 7. 9.

4. 5. 6.

7. 8. 9.

A(:,2) = 3*A(:,2)

A =

 1. 6. 3.

 4. 15. 6.

 7. 24. 9.

A(:,1) = A(:,1) - 0.5*A(:,2)

A =

 0. 2. 3.

 1.5 5. 6.

 3. 8. 9.

7) A(length(A))

8) A = - 1. 2. 3.

 Solutions to Selected Questions 3

9) The output is written below.
1. 2.
3. 4.
5. 6.

10) The SciLab command will be,
A(1:2,2:4) = 2

11) The SciLab command will be,
A = [ones(1, 3) ; zeros(1,3); ones(1, 3)];

12) Consider two points having the following position vectors.

𝐴 = 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘

𝐵 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘
The distance between these two points is given by,

 𝑎1 − 𝑏1
2 + 𝑎2 − 𝑏2

2 + 𝑎3 − 𝑏3
2

The SciLab code for determining this distance between the given points is

given below.

function d = distance(a,b)

d = sqrt(sum((a-b).^2))

endfunction

A = [1 2 3];

B = [4 5 6];

distance(a,b)

13) The SciLab program is written below.

function SC = sum_cube(a)

SC = sum(a.^3)

endfunction

A = [1 2 3];

sum_cube(A);

14) If [a b c] and [d e f] are two vectors, then their scalar or dot product

is defined by,
[a b c].[d e f]= a*d + b*e + c*f

Therefore, for two vectors 𝐴 and 𝐵 , the function for determining the scalar
product can be written in the following manner.

function SP = scalar_product(A,B);

SP = sum(A.*B);

endfunction

4 Advanced Programming in SciLab

15) Suppose, 𝑐 = 𝑎 × 𝑏
The function and the SciLab program for determining the cross product of

two vectors is given by,

function [c] = cross_product(a,b)

c = [a(2)*b(3)-a(3).*b(2) a(3)*b(1)-a(1)*b(3) a(1)*b(2)-

a(2)*b(1)];

endfunction

a = [1 2 3];

b = [4 5 6];

c = cross_product(a,b)

16) The angle between two vectors 𝐴 and 𝐵 is 𝜃 such that,

cos𝜃 =
𝐴 ∙ 𝐵

 𝐴 𝐵

The SciLab program for determining this angle is written below.

function angle = angle_between_vectors(A,B)

length_A = (A(1)^2 + A(2)^2 + A(3)^2)^0.5;

length_B = (B(1)^2 + B(2)^2 + B(3)^2)^0.5;

angle = acosd((sum(A.*B))/(length_A*length_B)) ;

endfunction

A = [3 4 2];

B = [2 2 -3];

angle_between_vectors(A,B)

17) Consider a parallelepiped whose adjacent sides are the vectors 𝐴 , 𝐵 and 𝐶
(see Figure 1.10). The volume of the parallelepiped is given by the

scalar triple product of these three vectors, i.e.

𝑉 = 𝐴 × 𝐵 ∙ 𝐶
The SciLab program written below calculates the volume of a parallelepiped

where the three vectors are equal to,

𝐴 = 2𝑖 + 2𝑗 + 2𝑘

𝐵 = 5𝑖 + 3𝑗 − 𝑘

𝐶 = 2𝑖 + 4𝑗 + 6𝑘

A = [2, 2, 2];

B = [5, 3, -1];

C = [2, 4, 6];

abs(A* cross(B,C)') = abs(B* cross(C,A)') = abs(C*

cross(B,A)')

The answer will be equal to 8.

 Solutions to Selected Questions 5

Figure 1.10: Diagram for Exercise 17

18) The SciLab program is written below.

A = [1 2 3]

P = poly(0,'a')

B = p*A

The answer will be equal to, B = a 2a 3a

19) The SciLab program is written below.

A = [1 2 3]

P = poly(0,'a')

u = [1+p, (1+p)^2, (1+p)^3]

B = A.*u

The answer will be equal to,
B =

 2 2 3

 1 + a 2 + 4a + 2a 3 + 9a + 9a + 3a

20) The SciLab program is written below.

function [integral] = indef_integral_poly(p)

coefficient = coeff(p);

a = 1;

for i = 1:length(coefficient);

 a = [a i];

end

new_coeff = [0 coefficient];

new_coeff = new_coeff./a;

integral = poly(new_coeff,varn(p),'coeff');

endfunction

//Define the polynomial

𝜃

C

B

A

6 Advanced Programming in SciLab

polynomial = poly([1],'x','coeff')

//Call the function

indef_integral_poly(polynomial)

//Determine the value of the integral at x = 2.

horner(indef_integral_poly(polynomial),2)

The integral will be equal to ‘𝑥’. Its value at 𝑥 = 2 will be equal to 2.

21) The function to evaluate the indefinite integral remains same as in the

previous question. The SciLab program is written below.

polynomial = poly([0 1],'x','coeff')

Answer_1 = indef_integral_poly(polynomial)

Answer_2 = horner(indef_integral_poly(polynomial),2)

The answer will be equal to,

Answer_1 = 0.5𝑥2
Answer_2 = 2

22) The SciLab program is written below.

q = poly(3,'x','r')

The answer will be equal to,
 q = - 3 + x

23) The SciLab program is written below.

m = input("Enter the number of rows in the matrix : ");

n = input("Enter the number of columns in the matrix :

");

disp("Enter the elements of the matrix row wise");

for i = 1:1:m;

 for j = 1:1:n;

 A(i,j) = input(" ");

 end

end

disp(A,"Matrix A : ");

det(A)

det(A’)

The output of this program is as follows.
A =

 Solutions to Selected Questions 7

0. 7. 2.

5. 1. 2.

6. 5. 2.

det(A) = 52

det(A’) = 52

24) The SciLab program is written below.

A = [1 2 + %i 3 ; 2 - %i 4 5*%i ; 3 -5*%i 6]

if A' == A then

 disp("Matrix is Hermitian");

else

 disp("Matrix is not Hermitian");

end

The output of this program is as follows.
A =

1. 2. + i 3.

2. - i 4. 5.i

3. - 5.i 6.

A' =

1. 2. + i 3.

2. - i 4. 5.i

3. - 5.i 6.

Matrix is Hermitian

25) For an orthogonal matrix (𝐴)

𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼
The SciLab program is written below.

A = [sind(30) cosd(30) ; -cosd(30) sind(30)]

A.'*A

A*A.'

The output of this program is as follows.
A =

0.5 0.8660254

- 0.8660254 0.5

A.’*A =

1. 0.

0. 1.

A*A.’ =

1. 0.

8 Advanced Programming in SciLab

0. 1.

26) For a unitary matrix (𝐴)

𝐴𝐴𝐶
𝑇

= 𝐴𝐶
𝑇
𝐴 = 𝐴𝐴+ = 𝐴+𝐴 = 𝐼

The SciLab program is written below.

A = [%i 0 ; 0 %i]

A*A'

A'*A

The output of this program is written below.
 A =

 i 0

 0 i

 A*A' =

 1. 0

 0 1.

A'*A =

 1. 0

 0 1.

27) The SciLab program is written below.

A = [1 2+%i 3 ; 2-%i 4 5*%i ; 3 -5*%i 6]

format(5)

[eigen_vector,eigen_value] = spec(A)

clean(eigen_vector(:,1)'*eigen_vector(:,3))

clean(eigen_vector(:,1)'*eigen_vector(:,2))

clean(eigen_vector(:,1)'*eigen_vector(:,1))

The output of this program is written below.
eigen_value =

 - 2.83 0. 0.

 0. 3.23 0.

 0. 0. 10.6

eigen_vector =

 0.61 - 0.24i - 0.42 + 0.58i 0.19 + 0.13i

 - 0.14 + 0.53i 0.35 + 0.47i 0.08 + 0.59i

 - 0.51 - 0.39 0.77

clean(eigen_vector(:,1)'*eigen_vector(:,3)) = 0

clean(eigen_vector(:,1)'*eigen_vector(:,2)) = 0

clean(eigen_vector(:,1)'*eigen_vector(:,1)) = 1

28) The conversion of components of a vector 𝐴 from Cartesian system

 𝐴𝑥 ,𝐴𝑦 ,𝐴𝑧 to cylindrical system 𝐴𝑟 ,𝐴𝜃 ,𝐴𝑧 is given by,

 Solutions to Selected Questions 9

𝐴𝑟
𝐴𝜃
𝐴𝑧

 =
cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0

0 0 1

𝐴𝑥
𝐴𝑦
𝐴𝑧

The SciLab program written below determines the components of the given

vector in cylindrical coordinate system.

exec('vectors.sci',-1);

A = [2 -3 4];

 //Coordinates of the point

B = cartesian_to_cylindrical(A);

x = B(1).*cosd(B(2)); //Define 𝑥 in terms of 𝑟,𝜃
y = B(1).*sind(B(2)); //Define 𝑦 in terms of 𝑟, 𝜃
z = B(3)
A = [x.*y z y];

//Components of the vector

Answer = [cosd(B(2)) sind(B(2)) 0 ; -sind(B(2))

cosd(B(2)) 0 ; 0 0 1]*[A(1) ; A(2) ; A(3)]

The answer will be equal to,

𝐴𝑟 = 6.6564024
𝐴𝜃 = 2.773501
𝐴𝑧 = 3

31) The SciLab program is written below.

A = [90 -40 50 ; -40 80 -30 ; -50 -30 100];

C = [5 ; 0 ; 0];

B = A\C

The answer will be equal to,

𝐼1 = 0.0522828

𝐼2 = 0.0405007

𝐼3 = 0.0382916

32) Let mass of the cube is ‘M’. It is distributed uniformly. Therefore mass per

unit volume will be equal to
𝑀

𝑎3. The elements of the moment of inertia tensor

can be obtained in the following manner.

𝐼𝑥𝑥 =
𝑀

𝑎3
 𝑦2 + 𝑧2

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 =
2

3
𝑀𝑎2

𝐼𝑦𝑦 =
𝑀

𝑎3
 𝑥2 + 𝑧2

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦 =
2

3
𝑀𝑎2

10 Advanced Programming in SciLab

𝐼𝑧𝑧 =
𝑀

𝑎3
 𝑥2 + 𝑦2

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 =
2

3
𝑀𝑎2

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = −
𝑀

𝑎3
 𝑥𝑦

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 = −
1

4
𝑀𝑎2

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = −
𝑀

𝑎3
 𝑥𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦 = −
1

4
𝑀𝑎2

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = −
𝑀

𝑎3
 𝑦𝑧

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 = −
1

4
𝑀𝑎2

This gives,

𝐼 = 𝑀𝑎2
2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3

The SciLab program to determine the principal axes is written below.

A = [2/3 -1/4 -1/4 ; -1/4 2/3 -1/4 ; -1/4 -1/4 2/3];

[eigen_vector,eigen_value] = spec(A);

The result of this short SciLab code can be interpreted in the following
manner.

 The eigen value matrix will be,

0.166667 0 0

0 0.916667 0
0 0 0.916667

 This implies that the eigen values are,

(0.166667𝑀𝑎2 , 0.916667𝑀𝑎2 , 0.916667𝑀𝑎2)

 The eigen vector matrix will be,

− 0.5773503 0.1243009 0.8069795
− 0.5773503 − 0.7610152 − 0.2958421
− 0.5773503 0.6367143 − 0.5111375

 The eigen vector corresponding to the first eigen value can be written as,

1
1
1

 This implies that the direction of principal axis is along 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 .

This represents the diagonal of the cube and is the symmetry (principal)

axis of the rotating cube. Similarly the other principal axes can be found

from the other two eigen vectors.

33) If the cube is rotating about its center, then the moment of inertia tensor will

be a diagonal matrix and off diagonal elements will be zero. The direction of

total angular momentum will always be parallel to the angular velocity. The

elements of the moment of inertia tensor can be obtained in the following

 Solutions to Selected Questions 11

manner.

𝐼𝑥𝑥 =
𝑀

𝑎3
 𝑦2 + 𝑧2

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 =
1

6
𝑀𝑎2

𝐼𝑦𝑦 =
𝑀

𝑎3
 𝑥2 + 𝑧2

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦 =
1

6
𝑀𝑎2

𝐼𝑧𝑧 =
𝑀

𝑎3
 𝑥2 + 𝑦2

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 =
1

6
𝑀𝑎2

𝐼𝑥𝑦 = 𝐼𝑦𝑥 = −
𝑀

𝑎3
 𝑥𝑦

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑧=0

𝑑𝑧 = 0

𝐼𝑥𝑧 = 𝐼𝑧𝑥 = −
𝑀

𝑎3
 𝑥𝑧

𝑎

𝑥=0

𝑑𝑥

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦 = 0

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = −
𝑀

𝑎3
 𝑦𝑧

𝑎

𝑧=0

𝑑𝑧

𝑎

𝑦=0

𝑑𝑦

𝑎

𝑥=0

𝑑𝑥 = 0

This gives,

𝐼 =
𝑀𝑎2

6

1 0 0
0 1 0
0 0 1

34) The graph shown in Figure 1.11 is expected for this exercise.

35) The graph shown in Figure 1.12 is expected for this exercise.

36) The graph shown in Figure 1.13 is expected for this exercise.

12 Advanced Programming in SciLab

Figure 1.11: Solution for Exercise 34

Figure 1.12: Solution for Exercise 35

 Solutions to Selected Questions 13

Figure 1.13: Solution for Exercise 36

37) The SciLab program is written below.

minimum_x = 0;

maximum_x = 1;

N = 500;

x = linspace(minimum_x,maximum_x,N)';

h = x(2) - x(1);

function y = func(x)

y = x;

endfunction

D = (diag(ones((N-1),1),1) - diag(ones((N-1),1),-1)

)/(2*h);

D(1,1) = -1/h;

D(1,2) = 1/h;

D(2,1) = -1/(2*h);

D(N,N-1) = -1/h;

D(N-1,N) = 1/(2*h);

D(N,N) = 1/h;

D*(diag(1-x.^2)*D*func(x))

38) The graph shown in Figure 1.14 is expected for this exercise.

14 Advanced Programming in SciLab

Figure 1.14: Solution for Exercise 38

39) The graph shown in Figure 1.15 is expected for this exercise.

Figure 1.15: Solution for Exercise 39

40) The first three wave functions are shown in Figure 1.16. The energy eigen

value for these wave functions will be equal to,

 Solutions to Selected Questions 15

𝐸0 = 1.3810434,𝐸1 = 4.1560752,𝐸2 = 7.0092436

Figure 1.16: Solution for Exercise 40

41) The first three wave functions are shown in Figure 1.17. The energy eigen

value for these wave functions will be equal to,

𝐸1 = −13.594455, 𝐸2 = −3.4022647, 𝐸3 = −1.5123143

Figure 1.17: Solution for Exercise 41

16 Advanced Programming in SciLab

CHAPTER 2

4) The SciLab program is written below. The histogram is shown in Figure 2.44.

data=rand(1,1000,'normal'); //Generate random number

x = -5:5;

y = histplot(x,data,style = 2) //Generate histogram

histplot(x,data,style = 2); //Plot histogram

plot2d(x(1:length(y))+0.5,y) //Mark the frequency

Figure 2.44: Solution for Exercise 4

5) The SciLab program is written below.

x = 0:0.3:%pi;

y = sin(x);

em = 0.1*sqrt(y);

ep = 0.1*sqrt(y);

plot(x,y,'ro-','markersize',15)

a = gca();

a.box='off';

errbar(x, y, em, ep);

h=gce();

h.thickness = 2;

newcolour = 2;

h.segs_color = newcolour *ones(h.segs_color);

xgrid(3)

 Solutions to Selected Questions 17

6) The SciLab program is written below. The solution is shown in Figure 2.45.

x = [0 0.5 1 1 2 3 3.5 4.51];

y = [0 0.51 0.51 0.2 -0.31 -0.25 0.2 0.25];

data = [x;y]; //Give data set

x_new = [0.25 0.7 2.3 3.3 4];

y_new = interpln(data,x_new); //Interpolated values

plot2d(data(1,:),data(2,:)) //Plot original data

plot2d(x_new,y_new) //Plot interpolated data

The values of the dependent variable at intermediate points are,
y_new = 0.255 0.51 -0.292 0.02 0.2247

7) The SciLab program is written below. The solution is shown in Figure 2.46.

x = [0 1.2 2.1 2.9 3.5 4.9 6 7.1];

y = [0 0.51 0.51 0.93 0.31 0.15 0.4 0.25];

data = [x;y]; //Given data set

data_smooth=smooth(data,0.1); //Interpolate/smooth data

plot2d(data(1,:),data(2,:)) //Mark/plot data points

//Draw smooth curve

plot2d(data_smooth(1,:),data_smooth(2,:));

8) The SciLab program is written below. The solution is shown in Figure 2.47.

data = rand(1,1000,'normal');

x = -5:5;

//Generate histogram

y = histplot(x,data,style=2,normalization=%f)

//Plot histogram

histplot(x,data,style=2,normalization=%f)

//Original data

data1 = [x(1:length(y))+0.5;y];

//Smooth data

data1_smooth = smooth(data1,0.1);

//Plot smooth data

plot2d(data1_smooth(1,:),data1_smooth(2,:))

//Mark the frequency

plot2d(data1(1,:),data1(2,:),5)

18 Advanced Programming in SciLab

9) The SciLab program is written below.

x = 0:0.01:2*%pi;

y = cos(x);

plot2d(x,y,2)

title('Cosine

Wave','fontsize',7,'color','black','fontname','times

italic','edgecolor','red','backgroundcolor','yellow');

Figure 2.45: Solution for Exercise 6

Figure 2.46: Solution for Exercise 7

 Solutions to Selected Questions 19

Figure 2.47: Solution for Exercise 8

10) The graph shown in Figure 2.48 is expected.

11) The resultant graph is given in Figure 2.49.

12) The SciLab program is written below. The graph is shown in Figure 2.50.

Figure 2.48: Solution for Exercise 10

20 Advanced Programming in SciLab

Figure 2.49: Solution for Exercise 11

C = 100d-6; //Value of capacitor (in farad)

R = 100; //Value of resistor (in Ω)
tau = C*R; //Time constant

Vs = 5; //Source voltage

t = 0: 0.001: 7*tau; //Time range for plotting

V = Vs * exp(-t/tau); //Voltage across capacitor

i = (Vs-V)/R; //Current in the circuit

subplot(211)

plot2d(t/tau,V/Vs);

subplot(212)

plot2d(t/tau,i/max(i));

 Solutions to Selected Questions 21

Figure 2.50: Solution for Exercise 12

13) The SciLab program is written below. The graph is shown in Figure 2.51.

function y = dirac(x)

y = exp((-(x-

a).^(2))/(2.*sigma.*sigma))/sqrt(2*%pi.*sigma.*sigma)

endfunction

sigma = 0.2; //Standard Deviation

a = 2; //Shift factor

x = a-2:0.01:a+2; //Range of x-variable

z = dirac(x); //Evaluate the function

plot2d(x,z) //Plot the function

sigma = 0.1; //Standard Deviation

z = dirac(x); //Evaluate the function

plot2d(x,z) //Plot the function

14) The graph shown in Figure 2.52 is expected for this exercise.

22 Advanced Programming in SciLab

Figure 2.51: Solution for Exercise 13

Figure 2.52: Solution for Exercise 14

15) The SciLab program is written below.

x = [1 0 0 1 1];

y = [1 1 0 0 1];

 Solutions to Selected Questions 23

z = [0 0 0 0 0];

param3d(x,y,z,alpha=75);

x = [1 0 0 1 1];

y = [1 1 0 0 1];

z = [0.5 0.5 0.5 0.5 0.5];

param3d(x,y,z,alpha=75);

x = [1 0 0 1 1];

y = [1 1 0 0 1];

z = [1 1 1 1 1];

param3d(x,y,z,alpha=75);

16) The graph shown in Figure 2.53 is expected for this exercise.

Figure 2.53: Solution for Exercise 16

17) The graph shown in Figure 2.54 is expected for this exercise.

18) The graph shown in Figure 2.55 is expected for this exercise.

19) The graph shown in Figure 2.56 is expected for this exercise.

20) The graph shown in Figure 2.57 is expected for this exercise.

21) The graph shown in Figure 2.58 is expected for this exercise.

22) The graph shown in Figure 2.59 is expected for this exercise.

24 Advanced Programming in SciLab

Figure 2.54: Solution for Exercise 17

Figure 2.55: Solution for Exercise 18

23) The graph shown in Figure 2.60 is expected for this exercise.

24) The SciLab programs are written below.

Part (a)

function f = func(vector)

 Solutions to Selected Questions 25

f(1) = vector(1) * vector(2);

f(2) = -vector(2).^3;

f(3) = (vector(1)-1) * vector(3);

endfunction

vector = [5 3 8];

sum(diag(numderivative(func,vector)))

The answer will be equal to, -20.

Part (b)

function f = func(vector)

f(1) = vector(1) * vector(1);

f(2) = vector(2) * vector(2);

f(3) = vector(3) * vector(3);

endfunction

vector = [2 1 3];

sum(diag(numderivative(func,vector)))

The answer will be equal to, 12.

25) The SciLab programs are written below.

Part (a)

function f = func(vector)

f(1) = vector(1) * vector(2).^2;

f(2) = -vector(1) * vector(2) * vector(3);

f(3) = vector(1).^2 * vector(3).^2;

endfunction

vector = [2 1 3];

a = numderivative(func,vector)

A = [a(3,2)-a(2,3) a(1,3)-a(3,1) a(2,1)-a(1,2)]

The answer will be equal to, A = 2 -36 -7

Part (b)

function f = func(vector)

f(1) = vector(2).^2 * vector(3).^2;

f(2) = -vector(1) * vector(3);

f(3) = vector(1) * vector(2);

endfunction

vector = [2 1 3];

a = numderivative(func,vector)

26 Advanced Programming in SciLab

A = [a(3,2)-a(2,3) a(1,3)-a(3,1) a(2,1)-a(1,2)]

The answer will be equal to, A = 4 5 -21

Figure 2.56: Solution for Exercise 19

Figure 2.57: Solution for Exercise 20

 Solutions to Selected Questions 27

Figure 2.58: Solution for Exercise 21

Figure 2.59: Solution for Exercise 22

28 Advanced Programming in SciLab

Figure 2.60: Solution for Exercise 23

 Solutions to Selected Questions 29

CHAPTER 3

1) The SciLab program is written below and graph is shown in Figure 3.20.

//Generate a data set having a linear trend and a

negative slope

x = linspace(1,10,10);

n = length(x); //n = 10

y = -rand(1,n).*x //Generate random y-values

y = y - min(y) //Rescale the y-axis

plot2d(x,y) //Plot the data

//Steps to determine the value of slope and constant

x1 = sum(x); // 𝑥𝑖
𝑛
𝑖=1

x2 = sum(x.*x); // 𝑥𝑖
2𝑛

𝑖=1

x1y1 = sum(x.*y); // 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖

y1 = sum(y); // 𝑦𝑖
𝑛
𝑖=1

//Define the two matrices

A = [x2 x1; x1 n];

B = [x1y1; y1];

C = A\B;

m = C(1); //Slope

c = C(2); //Constant

z = x(1)/2:0.01:x(n)+x(1)/2.0;

fplot2d(z,bestfit) //Plot the best fit curve

Figure 3.20: Graph for Exercise 1

30 Advanced Programming in SciLab

3) The SciLab program is written below. The best fit curve is shown in Figure

3.21.

x = linspace(0.1,1,10);

n = length(x);

//Generate random y-values around 𝑒−3𝑥

y = %e^(-3*x)+(min(y)*rand(1,n));

plot2d(x,y)

//Best fit parameters and plot the best fit curve

[bestfit,m,c] = exponential_fit(x,y)

plot2d(x,bestfit)

Figure 3.21: Graph for Exercise 3

4) The SciLab program is written below and the curve is shown in Figure 3.22.

// Define function for best fit

function s = bestfit(z)

s = alpha*(z^m);

endfunction

n = input("Please enter the value of data points, n = ")

x = [10 20 30 40 50 60 70 80 90 100];

y = [55 210 440 794 1205 1812 2451 3172 4022 5020];

// Calculate 𝑋𝑖
𝑛
𝑖=1 = log(𝑥𝑖)

𝑛
𝑖=1

 Solutions to Selected Questions 31

x1 = 0;

for i = 1:n;

 x1 = x1 + log(x(i));

end

// Calculate 𝑋𝑖
2𝑛

𝑖=1 = log(𝑥𝑖)
2𝑛

𝑖=1

x2 = 0;

for i = 1:n;

 x2 = x2 + (log(x(i)))^2;

end

//Calculate 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 = log(𝑥𝑖)

𝑛
𝑖=1 log(𝑦𝑖)

x1y1 = 0;

for i = 1:n;

 x1y1 = x1y1 + log(x(i))*log(y(i));

end

//Calculate 𝑌𝑖
𝑛
𝑖=1 = 𝑙𝑜𝑔(𝑦𝑖)

𝑛
𝑖=1

y1 = 0;

for i = 1:n;

 y1 = y1 + log(y(i));

end

//Calculate slope (𝑚 = 𝛽)
m = (n*x1y1-(x1*y1))/(n*x2-(x1)^2);

//Calculate 𝛼
alpha = exp(((x2*y1)-(x1*x1y1))/(n*x2 -(x1)^2));

//Range for plotting and plot the best fit curve

z= x(1)-x(1)/2:(x(2)-x(1))*0.1:x(n)+1.5*x(1);

fplot2d(z,bestfit);

//Plot the data points

for i = 1:n;

 plot(x(i),y(i),'r-*')

end

32 Advanced Programming in SciLab

Figure 3.22: Graph for Exercise 4

8) The SciLab program is written below. The solution is shown in Figure 3.23.

x = [2 4 6 8 10 12 14 16 18];

y = [0 0.2 1.1 1.2 1 2 1.9 1.8 2.5];

plot2d(x, y)

function y = model(x,constant)

y = constant(1)*x + exp(-constant(2)*x).*sin(x +

constant(3));

endfunction

function err = model_error(constant,z)

 err = z(2) - model(z(1),constant);

endfunction

z = [x ; y];

constant_trial = [0 1 1.5]';

[best_fit_constant, err] = datafit(model_error, z,

constant_trial);

x = linspace(0, 20, 100);

y = model(x,best_fit_constant);

plot2d(x, y)

 Solutions to Selected Questions 33

Figure 3.23: Solution for Exercise 8

9) The SciLab program is written below. The solution is shown in Figure 3.24.

x = [1 2 3 4 5 6 7 8 9 10 11 12];

y = [4.1 3.8 3 1.1 0.9 1.1 1.1 1 2 4.8 5.1 5];

plot2d(x, y)

function a = model(x,constant_trial)

i = 1;

for y = min(x):0.01:max(x)

if y <= constant_trial(1) then

 a(i) = constant_trial(2)

elseif (y>constant_trial(1))&(y<=constant_trial(3)) then

 m = (constant_trial(2)-

constant_trial(5))/(constant_trial(3)-constant_trial(1))

 a(i) = -m*(y-constant_trial(1)) + constant_trial(2);

elseif (y > constant_trial(3)) & (y <=

constant_trial(4)) then

 a(i) = constant_trial(5);

elseif (y > constant_trial(4)) & (y<constant_trial(6))

then

 m = (constant_trial(7)-

constant_trial(5))/(constant_trial(6)-constant_trial(4))

 a(i) = m*(y-constant_trial(4)) + constant_trial(5);

else

 a(i) = constant_trial(7);

34 Advanced Programming in SciLab

end

i = i+1;

end

endfunction

function err = model_error(constant,z)

err = z(2) - model(z(1),constant);

endfunction

z = [x ; y];

constant_trial = [2 4 4 8 1 10 5]';

[best_fit_constant, err] = datafit(model_error, z,

constant_trial);

x1 = 0:0.01:13;

y1 = model(x1,best_fit_constant);

plot2d(x1,y1)

Figure 3.24: Solution for Exercise 9

 Solutions to Selected Questions 35

CHAPTER 4

1) The exact solution of the differential equation is,

𝑌 = exp −𝑋
Figure 4.25 shows the solution of the differential equation obtained by using

the ‘ode’ in-built function of SciLab. The ‘X’ range is taken to be 0 to 1. The

SciLab program written for this graph is as follows.

//Define the function for differential equation

function dy = f(x,y);

dy = -y;

endfunction

x(1) = 0; //Initial value of X

y(1) = 1; //Initial value of Y

final = 1; //Final value of X

h = 0.1; //Step size

j = x(1);

k = 1;

while(j<=max(x));

 ode_result(k) = ode(y(1),x(1),j,f);

 j = j+h;

 k = k+1;

end

plot2d(x,ode_result)

For the same function and initial values, the functions for Euler’s and Runge-

Kutta methods can be loaded by using the following command.

exec('differentiation.sci',-1)

These functions are then invoked through the following commands.

[x,y] = euler(x(1),y(1),h,final);

plot2d(x,y)

[x,y] = modeuler1(x(1),y(1),h,final);

plot2d(x,y)

[x,y] = rk2(x(1),y(1),h,final);

plot2d(x,y)

[x,y] = rk4(x(1),y(1),h,final);

plot2d(x,y)

36 Advanced Programming in SciLab

It is clear from Figure 4.25, that Runge-Kutta methods give more accurate results as

compared with the Euler’s methods for the same step size.

Figure 4.25: Solution for Exercise 1

2) The exact solution of this differential equation is,

𝑦 = 5𝑒−2𝑡
Figure 4.26 shows the comparison of the analytical solution with the

estimates from Euler’s method. The graph corresponding to the analytical

solution is obtained by using the following commands.

t(1) = 0; //Initial value of t

y(1) = 5; //Initial value of y

final = 2; //Final value of t

//Define the function for differential equation

function ydot = f(t,y)

ydot = -2*y;

endfunction

//Plot the analytical solution
t = 0:0.2:2;

plot2d(t,y(1)*exp(-2*t));

 Solutions to Selected Questions 37

For the same function and initial values, the function for Euler’s method can

be loaded using the following command. The function for the Euler’s method

is then invoked for different step size.

exec('differentiation.sci',-1)

h = 0.2;

[t,y] = euler(t(1),y(1),h,final);

plot2d(t,y)

h = 0.8;

[t,y] = euler(t(1),y(1),h,final);

plot2d(t,y,)

It is clear from Figure 4.26 that a better estimate of the solution is obtained if

the step size is small.

3) The exact solution of this differential equation is,

𝑦 =
1

1 + 𝑒−𝑥

Figure 4.27 shows the comparison of the analytical solution with the

estimates from Euler’s method. The graph corresponding to the analytical

solution is obtained by using the following commands.

x(1) = -4; //Initial value of x

y(1) = 0.018; //Initial value of y

final = 4; //Final value of t

//Define the function for differential equation

function yprime = f(x,y)

yprime = exp(x)./((1 + exp(x)).^2);

endfunction

//Plot the analytical solution

x = -4:0.4:4;

plot2d(x,1 ./(1 + exp(-x)))

For the same function and initial values, the function for Euler’s method can

be loaded by using the following command. The function for the Euler’s

method is then invoked for a step size of 1.

exec('differentiation.sci',-1)

h = 1;

[x,y] = euler(x(1),y(1),h,final);

plot2d(x,y)

38 Advanced Programming in SciLab

It is clear from Figure 4.27 that Euler’s method gives a large amount of error

when the step size is large.

Figure 4.26: Solution for Exercise 2

4) The differential equation taken for a concave down solution curve is,
𝑑𝑦

𝑑𝑥
= −2𝑥

The differential equation taken for a concave up solution curve is,
𝑑𝑦

𝑑𝑥
= 2𝑥

The solution curves shown in Figures 4.28 - 4.29 are expected for these
differential equations.

 Solutions to Selected Questions 39

Figure 4.27: Solution for Exercise 3

Figure 4.28: Solution for Exercise 4

40 Advanced Programming in SciLab

Figure 4.29: Solution for Exercise 4

5) The procedure to solve the differential equation for the orthogonal curves is

exactly same as discussed in the text (Section 4.8.2). The solution curves

shown in Figure 4.30 are expected for this exercise.

Figure 4.30: Solution for Exercise 5

6) The analytical solution of the differential equation is,

 Solutions to Selected Questions 41

𝑥2 + 𝑦2 = 1
This is equation of a circle and it can also be written in terms of polar

coordinates.

𝑥 = sin𝜃

𝑦 = cos𝜃
The SciLab program for generating the analytical solution is,

angle = 0:0.2:2*%pi;

plot2d(sin(angle), cos(angle));

The two first order equations can be written in the form of a function.

function xdot = f1(t,x,y)

xdot = y;

endfunction

function ydot = f2(t,x,y)

ydot = -x;

endfunction

The initial conditions can be defined as,

t(1) = 0;

x(1) = 1;

y(1) = 0;

final = 2*%pi;

h = 0.2;

The functional form of the Euler’s method and the Runge-Kutta method can

be loaded using the following command and are then evoked and the result is
plotted by using the following commands.

exec('differentiation.sci',-1)

[t,x,y] = euler2(t(1),x(1),y(1),h,final);

plot2d(x,y);

[x,y,z] = rk42(x(1),y(1),z(1),h,final);

plot2d(x,y)

Figure 4.31 and Figure 4.32 shows the comparative graphs for the Euler’s

method and the Runge-Kutta method.

42 Advanced Programming in SciLab

Figure 4.31: Solution for Exercise 6

7) The SciLab program is written below and the solution curve is shown in

Figure 4.33.

exec('differentiation.sci',-1)

time(1) = 0; //Initial time

temp(1) = 80; //Initial temperature

Ts = 20; //Temperature of surrounding

final_time = 100; //Final time

h = 0.1; //Step size

alpha = 0.02;

function T_dt = f(t,T);

T_dt = -alpha*(T-Ts);

endfunction

[x,y] = rk4(time(1),temp(1),h,final_time);

plot2d(x,y,2)

alpha = 0.04;

[x,y] = rk4(time(1),temp(1),h,final_time);

plot2d(x,y,5)

 Solutions to Selected Questions 43

Figure 4.32: Solution for Exercise 6

8) The solution curve in Figure 4.34 is expected for the logistic growth model.

9) The analytical solution of the differential equation is,

𝑦 = 3 cos 𝑥 + 5 sin𝑥
The second order differential equation can be re-written in the form of

coupled first order differential equations in the following manner.

Let,
𝑑𝑦

𝑑𝑥
= 𝑧

This implies

𝑑𝑧

𝑑𝑥
=
𝑑2𝑦

𝑑𝑥2
= −𝑦

These two equations can be written in the form of a function.

function yprime = f1(x,y,z)

yprime = z;

endfunction

function zprime = f2(x,y,z)

zprime = -y;

endfunction

44 Advanced Programming in SciLab

Figure 4.33: Solution for Exercise 7

Figure 4.34: Solution for Exercise 8

The initial conditions can be defined as,

x(1) = 0;

y(1) = 3;

z(1) = 5;

final = 3*%pi;

h = 0.1;

 Solutions to Selected Questions 45

The functional form of the Euler’s method and the Runge-Kutta method can

be loaded by using the following command.

exec('differentiation.sci',-1)

These functions are called and the result is plotted by using the following

commands.

[x,y,z] = euler2(x(1),y(1),z(1),h,final);

plot2d(x,y);

[x,y,z] = rk42(x(1),y(1),z(1),h,final);

plot2d(x,y)

The analytical solution can be plotted by using the following command.

x = 0:0.1:3*%pi;

plot2d(x,3*cos(x) + 5*sin(x));

The in-built function of SciLab can be used in the following manner.

y0 = [3;5];

function dy = f(x,y);

dy(1) = y(2);

dy(2) = -y(1);

endfunction

x = 0:0.1:3*%pi;

y = ode(y0,0,x,f);

plot2d(x,y(1,:));

Figures 4.35, 4.36 and 4.37 show the comparative graphs for Euler’s method,

Runge-Kutta method and the in-built SciLab function respectively.

10) The phase space plot is shown in Figure 4.38.

11) For critically damped case, 𝑐2 = 4𝑚𝑘

This implies, 𝑐 = 4𝑚𝑘 = 160
Therefore, damping constant in the following SciLab program is taken to be

equal to 160. For comparison, over-damped case is taken to be double the

critical damping and under-damped case is taken to be half the critical

damping. The graph is shown in Figure 4.39.

46 Advanced Programming in SciLab

Figure 4.35: Solution for Exercise 9

Figure 4.36: Solution for Exercise 9

exec('differentiation.sci',-1)

function x_dot = f1(t,x,y)

x_dot = y;

endfunction

 Solutions to Selected Questions 47

Figure 4.37: Solution for Exercise 9

Figure 4.38: Solution for Exercise 10

function y_dot = f2(t,x,y)

y_dot = -(c*y + k*x)/m;

endfunction

t0 = 0; //Initial time

48 Advanced Programming in SciLab

x0 = 1; //Initial position

xdot_0 = 0; //Initial velocity

final = 8; //Final time

h = 0.1; //Step size

m = 50; //Mass of the object

k = 128; //Spring constant

c = sqrt(160*160/2);

[t,x,y] = rk42(t0,x0,xdot_0,h,final);

plot2d(t,x);

c = 160;

[t,x,y] = rk42(t0,x0,xdot_0,h,final);

plot2d(t,x);

c = sqrt(2*160*160);

[t,x,y] = rk42(t0,x0,xdot_0,h,final);

plot2d(t,x);

12) The general form of the second order differential equation is,

𝑑2𝑦

𝑑𝑥2
+ 𝑓 𝑥

𝑑𝑦

𝑑𝑥
+ 𝑔 𝑥 𝑦 = 𝑟(𝑥)

As explained in the text, it is necessary to define the functions 𝑓(𝑥), 𝑔(𝑥)

and 𝑟(𝑥) for the given differential equation; give the boundary conditions;

and then call the function for the finite difference method. The following

SciLab program shows this for part (a) of the question.

Figure 4.39: Solution for Exercise 11

 Solutions to Selected Questions 49

function def_f = f(x) //Define function f(x)

def_f = 0;

endfunction

function def_g = g(x) //Define function g(x)

def_g = 1;

endfunction

function def_r = r(x) //Define function r(x)

def_r = 0;

endfunction

exec('differentiation.sci',-1);

a = 0; //Initial value of x

b = %pi/2; //Final value of x

ya = 1; //Initial value of y

yb = 1; //Final value of y

h = 0.01; //Step Size

//Call the function for finite difference method

[x,y] = boundary(a,b,h,ya,yb,f,g,r);

plot2d(x,y) //Plot the result

Figure 4.40 shows the solution curve for the given differential equation.

Figure 4.40: Solution for Exercise 12(a)

The following graphs are expected for the parts, (b), (c) and (d) of this question.

50 Advanced Programming in SciLab

Figure 4.41: Solution for Exercise 12(b)

Figure 4.42: Solution for Exercise 12(c)

 Solutions to Selected Questions 51

Figure 4.43: Solution for Exercise 12(d)

13) The force due to air resistance is proportional to the speed of the object, and it

acts in the direction opposite to motion. Therefore, the acceleration of the

freely falling object will be given by,

𝑑2𝑥

𝑑𝑡2
=
𝑑𝑣

𝑑𝑡
= −𝑔 − 𝛼𝑣

The SciLab program to determine the velocity profile of the object is written below.

The velocity-time graph is shown in Figure 4.44.

//Define system of equations for freely falling object

function xdot = f_1(t,x)

xdot(1) = x(2);

xdot(2) = -g;

endfunction

//Define system of equations for object falling under

air resistance, 𝛼 is taken to be 0.7
function xdot = f_2(t,x)

xdot(1) = x(2);

xdot(2) = -g-(0.7*x(2));

endfunction

g = 9.82; //Acceleration due to gravity

height_initial = 100; //Initial height

v_initial = 0; //Initial velocity

t_initial = 0; //Initial time

52 Advanced Programming in SciLab

t = t_initial:0.3:((v_initial) +

(sqrt((v_initial*v_initial)+2*g*height_initial)))/g;

//Call the in-built function

x = ode([height_initial;v_initial],t_initial,t,f_1);

//Plot the velocity profile of freely falling object

plot2d(t,x(2,:));

//Call the in-built function

x = ode([height_initial;v_initial],t_initial,t,f_2);

//Plot the velocity profile of object falling under air

resistance

plot2d(t,x(2,:));

14) The graph shown in Figure 4.45 is expected for this exercise.

15) The graph shown in Figure 4.46 is expected for this exercise.

16) The graph shown in Figure 4.47 is expected for this exercise.

17) The SciLab program is written below. The solution curve is shown in Figure
4.48.

Figure 4.44: Solution for Exercise 13

 Solutions to Selected Questions 53

Figure 4.45: Solution for Exercise 14

function ydash = f(x,y)

ydash(1) = y(2);

ydash(2) = y(3);

ydash(3) = 5*sin(2*x) - 3*y(2);

endfunction

y_0 = 0;

ydash_0 = 0;

ydash_dash_0 = 0;

x = 0:0.1:48;

y = ode([y_0 ; ydash_0 ; ydash_dash_0],0,x,f);

plot2d(x,y(1,:))

54 Advanced Programming in SciLab

Figure 4.46: Solution for Exercise 15

Figure 4.47: Solution for Exercise 16

 Solutions to Selected Questions 55

Figure 4.48: Solution for Exercise 17

18) Based on the notations used in Section 4.8.10.2, the following SciLab

commands can be used for each of the parts of this question.

a) To show that the wave functions are orthogonal, use the following SciLab

commands. The output of each command is given in the table below.

Command Output

sum(eigenvector(:,1).* eigenvector(:,1)) 1

sum(eigenvector(:,1).* eigenvector(:,2)) - 6.356D-16

sum(eigenvector(:,1).* eigenvector(:,3)) 4.642D-16

b) Following SciLab commands can be used to determine the value of Bohr

radius.

Objective SciLab Command Output

 Calculate the maximum

probability

 Distance at which

electron probability is

maximum

[max_value_1,max_index_1]

= max(eigenvector (:,1).*

eigenvector (:,1))

max_value_1 = 0.0204578

max_index_1 = 26

r(max_index_1) = 0.52

c) The following SciLab commands can be used to determine the electron

probability in the 1s orbital.

56 Advanced Programming in SciLab

Objective SciLab Command Output

Probability that electron

lies in the range,

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟

s = 0;

for i = 1 : max_index_1;

s = sum(eigenvector(i,1).*

eigenvector(i,1)) + s;

end

s = 0.3242

Probability that electron

lies in the range,

𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 2𝑟𝐵𝑜𝑟

probability_range = find(r >=

r(max_index_1) & r <=

2*r(max_index_1));

s = 0;

for i = min(probability_range) :

max(probability_range);

s = sum(eigenvector(i,1).*

eigenvector(i,1)) + s;

end

s = 0.4420

Probability that electron

lies in the range,

0 ≤ 𝑟 ≤ 10𝑟𝐵𝑜𝑟

probability_range = find(r <=

10*r(max_index_1));

s = 0;

for i = min(probability_range) :

max(probability_range);

s = sum(eigenvector(i,1).*

eigenvector(i,1)) + s;

end

s = 0.9999

Probability that electron

lies in the range,

𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 10𝑟𝐵𝑜𝑟

probability_range = find(r >=

r(max_index_1) & r <=

10*r(max_index_1));

s = 0;

for i = min(probability_range) :

max(probability_range);

s = sum(eigenvector(i,1).*

eigenvector(i,1)) + s;

end

s = 0.6961

d) The following SciLab commands can be used to determine the electron

probabilities in the 2s orbital.

Objective SciLab Command Output

Probability that

electron lies in the

range,

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟

s = 0;

for i = 1 : max_index_1;

s = sum(eigenvector(i,2).* eigenvector(i,2)) +

s;

end

s = 0.0344

Probability that

electron lies in the

range,

4𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 6𝑟𝐵𝑜𝑟

probability_range = find(r >= 4*r(max_index_1) & r <=

6*r(max_index_1));

s = 0;

for i = min(probability_range) : max(probability_range);

s = sum(eigenvector(i,2).* eigenvector(i,2)) +

s;

end

s = 0.3513

e) The following SciLab commands can be used to determine the electron

probabilities in the 3s orbital.

 Solutions to Selected Questions 57

Objective SciLab Command Output

Probability that electron lies

in the range,

0 ≤ 𝑟 ≤ 𝑟𝐵𝑜𝑟

s = 0;

for i = 1 : max_index_1;

s = sum(eigenvector(i,3).*

eigenvector(i,3)) + s;

end

s = 0.0099

Probability that electron lies

in the range,

4𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 6𝑟𝐵𝑜𝑟

probability_range = find(r >=

4*r(max_index_1) & r <=

6*r(max_index_1));

s = 0;

for i = min(probability_range) :

max(probability_range);

s = sum(eigenvector(i,3).*

eigenvector(i,3)) + s;

end

s = 0.0590

Probability that electron lies

in the range,

12𝑟𝐵𝑜𝑟 ≤ 𝑟 ≤ 14𝑟𝐵𝑜𝑟

probability_range = find(r >=

12*r(max_index_1) & r <=

14*r(max_index_1));

s = 0;

for i = min(probability_range) :

max(probability_range);

s = sum(eigenvector(i,3).*

eigenvector(i,3)) + s;

end

s = 0.1962

19) The SciLab program to determine the behavior of wave function for the

ground state of electron for different values of screening constant ‘𝑎’ is given

below. The graph of the wave function is shown in Figure 4.49.

a = 0; //Lower boundary

b = 8; //Upper boundary

h = 0.02; //Step size

n = (b-a)/h; //Number of intervals

m = 0.511d6; //Mass of electron (eV/c
2
)

hbar = 1973; //ħ𝑐 (in eV A)

e = 3.795; //Electron charge in eV A
1/2

alpha = 2*m/(hbar*hbar);

a1 = 7; //Screening constant (in A)
V = -alpha*e*e;

A = zeros(n,n);

r = zeros(1,n);

r(1) = r(1) + h;

A(1,1) = 2 + (V*h*h*exp(-r(1)/a1)/r(1));

A(1,2) = -1;

for i = 2:n-1;

 r(i) = r(i-1) + h;

 A(i,i-1) = -1;

 A(i,i) = 2 + (V*h*h*exp(-r(i)/a1)/r(i));

 A(i,i+1) = -1;

58 Advanced Programming in SciLab

end

r(n) = r(n-1) + h;

A(n,n-1) = -1;

A(n,n) = 2 + (V*h*h*exp(-r(n)/a1)/r(n));

[c,d] = spec(A);

E = diag(d)/(alpha*h*h);

plot2d(r,c(:,1))

xgrid(13)

Value of ground state energy for different values of screening constant is

given below.

Screening Constant = 3A
Energy = -9.3824434 eV

Screening Constant = 5A
Energy = - 10.943102 eV

Screening Constant = 7A
Energy = - 11.662933 eV

Figure 4.49: Graph for Exercise 19

(20) The following energy eigen values will be obtained if boundary is taken

between 0 to 16.

 Solutions to Selected Questions 59

Energy state Energy eigen values (eV)

𝑬𝟏 4.14 =
3ħ𝜔

2

𝑬𝟐 9.66 =
7ħ𝜔

2

𝑬𝟑 15.18 =
11ħ𝜔

2

22) The SciLab program for an-harmonic oscillator is written below. The wave

function for the ground state is shown in Figure 4.50.

a = 0; //Lower boundary

b = 5; //Upper boundary

h = 0.01; //Step size

n = (b-a)/h; //Number of intervals

m = 940; //Mass of neutron (in Mev/c
2
)

hbar = 197.3; //ħ𝑐 (in MeV-fm)
k = 100; //Positive constant (in MeV-fm

-2
)

b = 30; //Perturbation factor (in MeV-fm
-3
)

alpha = 2*m/(hbar*hbar);

A = zeros(n,n);

r = zeros(1,n);

r(1) = r(1) + h;

A(1,1) = 2 +

(h*h*alpha*((0.5*k*r(1)^2)+((1/3)*b*r(1)^3)));

A(1,2) = -1;

for i = 2:n-1;

 r(i) = r(i-1) + h;

 A(i,i-1) = -1;

 A(i,i) = 2 +

(h*h*alpha*((0.5*k*r(i)^2)+((1/3)*b*r(i)^3)));

 A(i,i+1) = -1;

end

r(n) = r(n-1) + h;

A(n,n-1) = -1;

A(n,n) = 2 +

(h*h*alpha*((0.5*k*r(n)^2)+((1/3)*b*r(n)^3)));

[c,d] = spec(A);

E = diag(d)/(alpha*h*h);

plot2d(r,c(:,1))

60 Advanced Programming in SciLab

Ground state energy for different values of perturbation constant (𝑏) are given

below.

B E(1) (in MeV)

0 96.526684

10 100.24487

30 106.89398

Figure 4.50: Graph for Exercise 22

23) The SciLab program for the Morse potential is written below. The wave

function for the ground state is shown in Figure 4.51.

a = 0; //Lower boundary

b = 10; //Upper boundary

h = 0.01; //Step size

n = (b-a)/h; //Number of intervals

m = 940d6; //Mass of neutron (in eV/c
2
)

hbar = 1973; //ħ𝑐 (in eV-𝐴)
D = 0.755501; //Dissociation energy

aa = 1.44; //Width of potential

r0 = 0.131349 //Equilibrium bond distance

alpha = 2*m/(hbar*hbar);

A = zeros(n,n);

r = zeros(1,n);

 Solutions to Selected Questions 61

r(1) = r(1) + h;

A(1,1) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(1)-

r0)/r(1))))-(exp(-aa*((r(1)-r0)/r(1)))))));

A(1,2) = -1;

for i = 2:n-1;

 r(i) = r(i-1) + h;

 A(i,i-1) = -1;

 A(i,i) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(i)-

r0)/r(i))))-(exp(-aa*((r(i)-r0)/r(i)))))));

 A(i,i+1) = -1;

end

r(n) = r(n-1) + h;

A(n,n-1) = -1;

A(n,n) = 2 + (h*h*alpha*(D*((exp(-2*aa*((r(n)-

r0)/r(n))))-(exp(-aa*((r(n)-r0)/r(n)))))));

[c,d] = spec(A);

E = diag(d)/(alpha*h*h);

plot2d(r,c(:,1))

The energy eigen values of the vibrating hydrogen molecule in different

energy states are given below.

Radial Range
 𝒂 < 𝑟 < 𝑏

Energy level
Energy eigen

value (eV)

−5 < 𝑟 < 5 Ground state = E(1) -0.1869

0 < 𝑟 < 10

Ground state = E(1) -0.1545

E(2) -0.1429

E(3) -0.1388

E(4) -0.1330

24) The Lagrangian for damping motion of a simple pendulum shown is given

by,

𝐿 = 𝑒𝛼𝑡
1

2
𝑚𝑙2𝜃 2 −𝑚𝑔𝑙 1 − cos𝜃

Therefore the Lagrange’s equation of motion becomes,

𝑒𝛼𝑡 𝜃 + 𝛼𝜃 +
𝑔

𝑙
sin𝜃 = 0

This implies,

62 Advanced Programming in SciLab

𝜃 = −𝛼𝜃 −
𝑔

𝑙
sin𝜃

The SciLab program is written below. The position-time and the phase space graphs

are shown in Figures 4.52 and 4.53 respectively.

Figure 4.51: Graph for Exercise 23

function ydot = f(t,y)

ydot(1) = y(2);

ydot(2) = -(g/l)*sin(y(1)) - 0.2*y(2);

endfunction

l = 1;

g = 9.82;

theta_0 = 0.5;

theta_dot_0 = 1.0;

t = 0:0.01:40;

y = ode([theta_0 ; theta_dot_0],0,t,f);

plot2d(t,y(1,:))

plot2d(y(1,:),y(2,:))

25) The Lagrangian for spring pendulum is given by,

𝐿 =
1

2
𝑚 𝑟 2 + 𝑙 + 𝑟 2𝜃 2 −

1

2
𝑘𝑟2 −𝑚𝑔 𝑙 + 𝑟 1− cos𝜃 + 𝑚𝑔𝑟

Therefore the Lagrange’s equations of motion becomes,

 Solutions to Selected Questions 63

Figure 4.52: Solution for Exercise 24

Figure 4.53: Solution for Exercise 24

𝑟 = 𝑙 + 𝑟 𝜃 2 + 𝑔 cos𝜃 −
𝑘

𝑚
𝑟

𝜃 2 = −
2

𝑙 + 𝑟
𝑟 𝜃 −

𝑔

𝑙 + 𝑟
sin𝜃

64 Advanced Programming in SciLab

The SciLab program is written below. The spring phase-plane and the

pendulum phase-plane graphs are shown in Figures 4.54 and 4.55,

respectively.

function ydot = f(t,y)

ydot(1) = y(2);

ydot(2) = (l+y(1))*(y(4).^2) + g*cos(y(3)) - (k/m)*y(1);

ydot(3) = y(4);

ydot(4) = -g*sin(y(3))/(l+y(1)) - 2*y(2)*y(4)/(l+y(1));

endfunction

l = 3;

g = 9.82;

k = 5;

m = 3;

r_0 = 4;

rdot_0 = 0;

theta_0 = 0.2;

theta_dot_0 = 0;

t = 0:0.1:60;

y = ode([r_0 ; rdot_0 ; theta_0 ; theta_dot_0],0,t,f);

plot2d(y(1,:),y(2,:))

plot2d(y(3,:),y(4,:))

Figure 4.54: Solution for Exercise 25

 Solutions to Selected Questions 65

Figure 4.55: Solution for Exercise 25

26) The position coordinates of the two masses are,

 𝑥1 = 𝑙1 sin𝜃1

 𝑥2 = 𝑙1 sin𝜃1 + 𝑙2 sin𝜃2

 𝑦1 = −𝑙1 cos𝜃1

 𝑦2 = −𝑙1 cos𝜃1 − 𝑙2 cos𝜃2

 The kinetic energy of the system is equal to,

𝐾 =
1

2
𝑚1 𝑥1

2 + 𝑦1
2 +

1

2
𝑚2 𝑥2

2 + 𝑦2
2

 This implies,

𝐾 =
1

2
𝑚1𝜃 1

2
𝑙1

2 +
1

2
𝑚2 𝜃 1

2
𝑙1

2 + 𝜃 2
2
𝑙2

2 + 2𝑙1𝑙2𝜃 1𝜃 2 cos 𝜃1 − 𝜃2

 The potential energy of the system is equal to,

𝑉 = − 𝑚1 + 𝑚2 𝑔𝑙1 cos𝜃1 −𝑚2𝑙2𝑔 cos𝜃2
 The Lagrangian of the system is given by,

𝐿 = 𝐾 − 𝑉

 Therefore the Lagrange’s equation of motion will be equal to,

𝜃1
 =

−𝑚2𝑙1𝜃 1
2

sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃1 + 𝑔𝑚2 sin𝜃2 cos 𝜃1 − 𝜃2

−𝑚2𝑙2𝜃 2
2

sin 𝜃1 − 𝜃2 − 𝑚1 +𝑚2 𝑔 sin𝜃1

 𝑚1 + 𝑚2 𝑙1 −𝑚2𝑙1 cos2 𝜃1 − 𝜃2

𝜃2
 =

𝑚2𝑙2𝜃 2
2

sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃1 + 𝑔 𝑚1 +𝑚2 sin𝜃1 cos 𝜃1 − 𝜃2

+ 𝑚1 + 𝑚2 𝑙1𝜃 1
2

sin 𝜃1 − 𝜃2 − 𝑚1 + 𝑚2 𝑔 sin𝜃2

 𝑚1 +𝑚2 𝑙2 −𝑚2𝑙2 cos2 𝜃1 − 𝜃2

66 Advanced Programming in SciLab

The SciLab program is written below. The graph is shown in Figure 4.56.

function ydot = f(t,y)

ydot(1) = y(2);

num_1 = -m_2*l_1*(y(2)^2)*sin(y(1)-y(3))*cos(y(1)-y(3))

+ g*m_2*sin(y(3))*cos(y(1)-y(3)) -

m_2*l_2*(y(4)^2)*sin(y(1)-y(3)) - (m_1+m_2)*g*sin(y(1));

den_1 = l_1*(m_1+m_2) - m_2*l_1*(cos(y(1)-y(3))^2);

ydot(2) = num_1/den_1;

ydot(3) = y(4);

num_2 = m_2*l_2*(y(4)^2)*sin(y(1)-y(3))*cos(y(1)-y(3)) +

g*sin(y(1))*cos(y(1)-y(3))*(m_1+m_2) +

l_1*(y(2)^2)*sin(y(1)-y(3))*(m_1+m_2) -

(m_1+m_2)*g*sin(y(3));

den_2 = l_2*(m_1+m_2) - m_2*l_2*(cos(y(1)-y(3))^2);

ydot(4) = num_2/den_2;

endfunction

g = 9.82;

l_1 = 1;

l_2 = 2;

m_1 = 2;

m_2 = 1;

theta_1_0 = %pi;

theta_1_dot_0 = 0;

theta_2_0 = %pi/2;

theta_2_dot_0 = 0;

t = 0:0.01:50;

y = ode([theta_1_0 ; theta_1_dot_0 ; theta_2_0 ;

theta_2_dot_0],0,t,f);

x1 = l_1*sin(y(1,:));

y1 = -l_1*cos(y(1,:));

x2 = l_1*sin(y(1,:))+l_2*sin(y(3,:));

y2 = -l_1*cos(y(1,:)) - l_2*cos(y(3,:));

plot2d(x1,y1)

plot2d(x2,y2)

 Solutions to Selected Questions 67

Figure 4.56: Solution for Exercise 26

27) The coordinates of the pendulum attached to a rotating pivot are given by,

𝑥 = 𝑎 cos𝜔𝑡 + 𝑏 sin𝜃

𝑦 = 𝑎 sin𝜔𝑡 − 𝑏 cos𝜃
Here,

 The center of the pivot is taken as the center of the coordinate system.

 𝑎 is the radius of the pivot

 𝜔 is the angular frequency of the rotating pivot

 𝑏 is the length of the pendulum

 𝜃 is the angular displacement of the pendulum
The equation of motion of this system is given by,

𝜃 =
𝑎

𝑏
𝜔2 cos 𝜃 − 𝜔𝑡 −

𝑔

𝑏
sin𝜃

The SciLab program is written below. The solution curve is shown is Figure

4.57.

function ydot = f(t,y)

ydot(1) = y(2);

ydot(2) = (a/b)*omega*omega*cos(y(1)-(omega*t)) -

(g/b)*sin(y(1))

endfunction

a = 0.2;

b = 1;

omega = 20;

g = 9.82;

theta_0 = %pi/6;

68 Advanced Programming in SciLab

theta_dot_0 = 0;

t = 0:0.01:10;

y = ode([theta_0 ; theta_dot_0],0,t,f);

plot2d(t,y(1,:))

Figure 4.57: Solution for Exercise 27

28) Suppose the pendulum of mass 𝑚 and length 𝑙 is attached to a moving pivot

having mass 𝑀. The pivot is located at a distance 𝑥 from the reference point

and is moving along the 𝑥-axis. If the angular displacement of the pendulum

is 𝜃 then the coordinates of the bob of the pendulum are given by,

𝑥𝑝 = 𝑥 + 𝑙 sin𝜃

𝑦𝑝 = −𝑙 cos𝜃

The Lagrange’s equation of motion is given by,

𝜃 = −
𝑥

𝑙
cos𝜃 −

𝑔

𝑙
sin𝜃

The SciLab program is written below. For this program it is assumed that the

pivot is moving such that 𝑥 = 𝑎 cos𝜔𝑡. This implies that 𝑥 = −𝑎𝜔2 cos𝜔𝑡.
The solution curve is shown in Figure 4.58.

function ydot = f(t,y)

ydot(1) = y(2);

ydot(2) = -(g/l)*sin(y(1)) +

(a*omega*omega*cos(omega*t)*cos(y(1)))/l;

endfunction

l = 1;

 Solutions to Selected Questions 69

g = 9.82;

a = 0.2;

omega = 100;

theta_0 = 0.1;

theta_dot_0 = 0;

t = 0:0.01:3;

y = ode([theta_0 ; theta_dot_0],0,t,f);

plot2d(t,y(1,:))

Figure 4.58: Solution for Exercise 28

29) The solution to this question is similar to the previous exercise, with the

exception that pivot is now moving along the y-axis instead of the x-axis.

30) The Lagrange’s equation of motion for this system is,

𝑥1 =
−𝑔 sin𝜃 cos𝜃

𝑚 +𝑀
𝑚

− cos2 𝜃

𝑥2 =
𝑔 sin𝜃

1 −
𝑚 cos2 𝜃
𝑚 + 𝑀

The graph shown in Figure 4.59 is expected for this exercise.

70 Advanced Programming in SciLab

Figure 4.59: Solution for Exercise 30

 Solutions to Selected Questions 71

CHAPTER 5

1) The following SciLab program calculates the given integral by using different

rules of integration.

exec('integrate.sci',-1);

function y = f(x)

y = sin(x);

endfunction

a = 0; //Lower limit

b = %pi/2; //Upper limit

intg(a,b,f)

integrate('f(x)','x',a,b)

//Even number of intervals have been taken only for

comparison of the trapezoidal method with the Simpson’s

1/3 Rule

h = (b-a)/2;

Y = trapezoidal(f,a,b,h)

Y = simpson_1_3(f,a,b,h)

h = (b-a)/3; //Step size for Simpson’s 3/8 Rule

Y = simpson_3_8(f,a,b,h)

The values of the integral from different methods and different step sizes have been

tabulated in Table 5.4.

Table 5.4: Result for Exercise 1

Method Step size Value of the integral

In-built Function – intg 1

In-built Function – Integrate 1

Trapezoidal Rule

𝑏 − 𝑎

2
 0.9480594

𝑏 − 𝑎

10
 0.9979430

72 Advanced Programming in SciLab

Method Step size Value of the integral

Simpson’s 1/3 Rule

𝑏 − 𝑎

2
 1.0022799

𝑏 − 𝑎

10
 1.0000034

Simpson’s 3/8 Rule

𝑏 − 𝑎

3
 1.0010049

𝑏 − 𝑎

30
 1.0000001

2) Suppose the definite integral to be evaluated is,

 𝑥3

4

0

𝑑𝑥

The SciLab program is written below and the significance of step size is

shown in Figures 5.12 and 5.13.

exec('integrate.sci',-1);

a = 0; //Lower limit

b = 4; //Upper limit

h = 2; //Number of intervals

step = (b-a)/h; //Step size

for i = 1:h //Loop for plotting the trapezoids

 if pmodulo(i,2) == 0 then

 j = 4;

 elseif pmodulo(i,2) == 1 then

 j = 7;

 end

 x1 = a+(step*(i-1));

 x2 = a+(step*i);

 y1 = x1^3;

 y2 = x2^3;

 xpts = [x1, x2, x2, x1];

 ypts = [y1, y2, 0, 0];

 scf(0);

 plot2d(x1,y1);

 xfpoly(xpts,ypts,j);

end

x = a:0.01:b; //x-range for plotting

plot2d(x,x.^3) //Plot the function

 Solutions to Selected Questions 73

Figure 5.12: Graph for solution of Exercise 2

The analytical solution of the given integral is equal to 64. But trapezoidal method

gives a value of 80 when the entire interval is divided into 2 sub-intervals as shown

in Figure 5.12. It clearly shows that a large step size in this case results into over-

estimation of the value of integral. A more accurate result is obtained if the number

of sub-intervals is increased to 8 (shown in Figure 5.13).

Figure 5.13: Graph for solution of Exercise 2

74 Advanced Programming in SciLab

3) According to the Debye’s model, the molar specific heat is given by,

𝐶𝑣 = 9𝑁𝑘
𝑇

𝑇𝐷

3

𝑥4𝑒𝑥

 𝑒𝑥 − 1 2

𝑇𝐷
𝑇

0

 𝑑𝑥

The following SciLab program plots the molar specific heat of the metal on

the y-axis and temperature on the x-axis. The graph is shown in Figure 5.14.

In this program,

 The temperature is varied from 0.5 K to about 3 times the higher Debye

temperature, i.e. from 0.5 K to 900 K.

 At high temperatures, the Debye’s formula approaches the Dulong-Petit

law, according to which the molar specific heat is equal to 3𝑁𝑘 =
24.94 𝐽𝐾−1.

function [Cv] = DB(T)

m = integrate('(y**4)*exp(y)/((exp(y)-1)^2)','y',0,TD/T)

Cv = 9*m*N*k*(T/TD)^3;

endfunction

k = 1.381e-23; //Boltzmann constant (in J/K)

N = 6.022e23; //Avogadro’s number

n = input("Enter the number of elements for the graph :

")

for i = 1:n;

 element = input("Enter the name of the element :

","string");

 TD = input("Enter the Debye temperature (in Kelvin)

: ");

 x = [0.5 : 0.1 : 900.0];

 fplot2d(x,DB);

 A(i) = string(element);

end

legend(A);

The input parameters are written below,
Enter the number of elements for the graph : 2

Enter the name of the element : Copper

Enter the Debye temperature (in Kelvin) : 340

Enter the name of the element : Sodium

Enter the Debye temperature (in Kelvin) : 157

 Solutions to Selected Questions 75

Figure 5.14: Graph for Exercise 3

4) According to the Debye’s model, the molar specific heat is given by,

𝐶𝑣 = 9𝑁𝑘
𝑇

𝑇𝐷

3

𝑥4𝑒𝑥

 𝑒𝑥 − 1 2

𝑇𝐷
𝑇

0

 𝑑𝑥

The following SciLab program plots the molar specific heat of the metal on

the y-axis and
𝑇

𝑇𝐷
 on the x-axis. The graph is shown in Figure 5.15. In this

program,

 The temperature is varied 0.01𝑇𝐷 to 3𝑇𝐷 . This implies that the values on
the x-axis range from 0.01 to 3.0.

 This graph shows that if the x-axis is in terms of
𝑇

𝑇𝐷
, then the curves for

copper and sodium overlap.

function [Cv] = DB(alpha)

m = integrate('(y**4)*exp(y)/((exp(y)-

1)^2)','y',0,1.0/alpha)

Cv = 9*m*N*k*(alpha)^3;

endfunction

k = 1.381e-23; //Boltzmann constant (in J/K)

N = 6.022e23; //Avogadro’s number

n = input("Enter the number of elements for the graph :

")

for i = 1:n

76 Advanced Programming in SciLab

 element = input("Enter the name of the element :

","string");

 TD = input("Enter the debye temperature (in Kelvin)

: ");

 x = [0.01 : 0.01 : 3.0];

 fplot2d(x,DB);

 A(i) = string(element);

end

legend(A);

The input parameters are written below,
Enter the number of elements for the graph : 2

Enter the name of the element : Copper

Enter the debye temperature (in Kelvin) : 340

Enter the name of the element : Sodium

Enter the debye temperature (in Kelvin) : 157

Figure 5.15: Graph for Exercise 4

7) The SciLab program is written below.

The diffraction patterns for different widths of the slit are shown in Figures

5.16 (a – d).

function y = f1(x) //Fresnel’s Integral

y = cos(%pi*x*x/2);

endfunction

 Solutions to Selected Questions 77

function y = f2(x) //Fresnel’s Integral

y = sin(%pi*x*x/2);

endfunction

slit = 1; //∆𝑣
i = 1;

for v = -slit:0.01:2*slit;

 v1(i) = v;

 x_up(i) = integrate('f1(x)','x',0,v);

 y_up(i) = integrate('f2(x)','x',0,v);

 x_down(i) = integrate('f1(x)','x',0,slit-v);

 y_down(i) = integrate('f2(x)','x',0,slit-v);

 intensity(i) = (x_up(i)+x_down(i))^2 +

(y_up(i)+y_down(i))^2;

i = i+1;

end

plot2d(v1-(slit/2),intensity);

Figure 5.16 (a): Fresnel’s Diffraction pattern due to slit of width 1

78 Advanced Programming in SciLab

Figure 5.16 (b): Fresnel’s Diffraction pattern due to slit of width 2

Figure 5.16 (c): Fresnel’s Diffraction pattern due to slit of width 3

 Solutions to Selected Questions 79

Figure 5.16 (d): Fresnel’s Diffraction pattern due to slit of width 4

8) The SciLab program is written below. The diffraction patterns for different

widths of the wire are shown in Figures 5.17(a – d).

function y = f1(x) //Fresnel’s Integral

y = cos(%pi*x*x/2);

endfunction

function y = f2(x) //Fresnel’s Integral

y = sin(%pi*x*x/2);

endfunction

slit = 1; //∆𝑣
i = 1;

for v = -4.4:0.01:slit+4.4;

 v1(i) = v;

 x_up(i) = integrate('f1(x)','x',0,v);

 y_up(i) = integrate('f2(x)','x',0,v);

 x_down(i) = integrate('f1(x)','x',0,slit-v);

 y_down(i) = integrate('f2(x)','x',0,slit-v);

 intensity(i) = 0.5*((1-x_up(i)-x_down(i))^2 + (1-

y_up(i)-y_down(i)))^2;

 i = i+1;

end

plot2d(v1-(slit/2),intensity);

80 Advanced Programming in SciLab

Figure 5.17 (a): Fresnel’s Diffraction due to a wire of width 1

Figure 5.17 (b): Fresnel’s Diffraction due to a wire of width 2

 Solutions to Selected Questions 81

Figure 5.17 (c): Fresnel’s Diffraction due to a wire of width 3

Figure 5.17 (d): Fresnel’s Diffraction due to a wire of width 4

11) The SciLab program for differentiation of a triangular wave is written below.

The graph is shown in Figure 5.18. Note that periodic functions will be

discussed in detail in the Chapter on Fourier analysis.

period = 2*%pi; //Period of triangular wave

82 Advanced Programming in SciLab

function a = periodic(f,T,x) //Periodic function

if (x >= 0) & (x <= T) then

 a = f(x);

elseif x < 0 then

 x_new = x + T;

 a = periodic(f,T,x_new);

elseif x > T then

 x_new = x - T;

 a = periodic(f,T,x_new);

end

endfunction

function y = f(x) //Triangular wave

if x < period*0.5 then

 y = x;

else

 y = period-x

end

endfunction

x = [0:0.01:2*period]; //Range of ‘x’ variable

for i = 1:length(x)

 y(i) = periodic(f,period,x(i));

end

dy = diff(y)/0.01; //Differentiation

x1 = x(1:$-1);

plot2d(x1,dy) //Plot the first derivative

plot2d(x,y') //Plot the triangular wave

Figure 5.18: Solution of Exercise 11

 Solutions to Selected Questions 83

12) The SciLab program is written below. The displacement, velocity and

acceleration profiles are shown in Figure 5.19.

t = [0:0.01:1];

displacement = 5*t.^3 + t.^2 + 1.0;

velocity = diff(displacement)/0.01;

acceleration = diff(velocity)/0.01;

t1 = t(1:$-1);

t2 = t1(1:$-1);

plot2d(t,displacement)

plot2d(t1,velocity)

plot2d(t2,acceleration)

Figure 5.19: Solution for Exercise 12

13) The output graph is shown in Figure 5.20.

84 Advanced Programming in SciLab

Figure 5.20: Solution for Exercise 13

 Solutions to Selected Questions 85

CHAPTER 6

1) The SciLab program is written below and the graph is shown in Figure 6.10.

i = -1;

j = 0;

for n = 1:3

 x = 0.001:0.5:10;

 i = i+1;

 j = j+1;

 y = besselj(i,x);

 plot2d(x,y)

end

Figure 6.10: Solution of Exercise 1

2) The SciLab program is written below.

function y = J_alpha(alpha, x)

series = 0;

for n = 0:10;

 series_alpha = (((-1)^n)/(factorial(n)*factorial(n

+ alpha)))*(x/2)^(2*n);

 series = series + series_alpha;

end

y = ((x/2)^alpha).*series;

endfunction

86 Advanced Programming in SciLab

The result is given below.
J_alpha(0,1) = 0.7651977

J_alpha(0,2) = 0.2238908

3) The interpolated value of Bessel functions can be determined by using the

following Newton’s forward difference formula for interpolation.

𝑦𝑛 𝑥 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!
∆2𝑦0+. . +

𝑝 𝑝 − 1 . . (𝑝 − 𝑛 + 1)

𝑛!
∆𝑛𝑦0

Here,

 A range of data points 𝑥0 ,𝑦0 , 𝑥1 ,𝑦1 , 𝑥2 ,𝑦2 … 𝑥𝑛 ,𝑦𝑛 is given such

that the values of 𝑥 are equidistant.

 Therefore the step size is = 𝑥1 − 𝑥0 = 𝑥2 − 𝑥1 and so on.

 It is required to determine an interpolated value at a random value of 𝑥

lying in the given range. This value is labeled as 𝑦𝑛 𝑥 .

 Therefore, 𝑝 =
𝑥−𝑥0

 ∆𝑦0 corresponds to the first forward difference.

 ∆2𝑦0 corresponds to difference of the first forward differences. It is

therefore called as the second forward difference.

 ∆𝑛𝑦0 corresponds to 𝑛𝑡 forward difference

The SciLab program for determining the value of 𝐽0 9.95 is written below.

x = [5,6,7,8,9,10,11,12];

for i = 1:length(x);

 y(1,i) = besselj(0,x(i));

end

for i = 2:length(x);

 for j = 1:(length(x)-(i-1));

 y(i,j) = y(i-1,j+1)-y(i-1,j);

 end

end

x_given = 9.95;

h = x(2) - x(1);

p = (x_given - x(1))/h;

sum = y(1,1);

m = 1;

for i = 2:length(x);

 m = m*(p-i+2)

 sum = sum + ((m*y(i,1))/factorial(i-1));

end

mprintf("\n Interpolated value of Bessel function at x =

"+string(x_given)+" is equal to %f",sum);

mprintf("\n Actual value of Bessel function at x =

"+string(x_given)+" is equal to %f",besselj(0,x_given));

The result is as follows.

 Solutions to Selected Questions 87

Interpolated value of Bessel function at x = 9.95 is

equal to -0.243471

Actual value of Bessel function at x = 9.95 is equal to

-0.243450

For 𝐽0 25.2 , change the x-range to equally spaced values around 25.

The result will be as follows.
Interpolated value of Bessel function at x = 25.2 is

equal to 0.119655

Actual value of Bessel function at x = 25.2 is equal to

0.119157

4) The SciLab program is written below.

p = zeros(5,1);

for order = 1:5;

 p(order) = legendre_poly_gamma(order,'x');

end;

The roots of these polynomials can be obtained by using the in-built SciLab function,

‘roots’. The result is tabulated below (Table 6.3).

Table 6.3: Result for Exercise 4

roots(p(1)) 0.

roots(p(2))
- 0.5774

0.5774

roots(p(3))

- 0.7746

0.7746

0

roots(p(4))

- 0.8611

0.8611

- 0.3400

0.3400

roots(p(5))

- 0.9062

- 0.5385

0.9062

0.5385

0

88 Advanced Programming in SciLab

CHAPTER 7

1) The SciLab program is written below. The graph is shown in Figure 7.21.

exec('fourier.sci',-1);

period = 4; //Periodicity

function y = f(x) //Periodic function

if x < 0 then

 y = x;

else

 y = -x

end

endfunction

x = [-2*period : 0.01 : 2*period];

for i = 1:length(x)

 y(i) = periodic1(f,0.5*period,x(i));

end

plot2d(x,y')

2) The SciLab program is written below.

exec('fourier.sci',-1)

period = 10; //Periodicity

function y = f(x)

if (x > -0.25*period) & (x < 0.25*period) then

 y = 0.5;

else

 y = 0

end

endfunction

x = [-1.5*period:0.01:1.5*period];

for i = 1:length(x)

 y(i) = periodic1(f,0.5*period,x(i));

end

plot2d(x,y)

 Solutions to Selected Questions 89

Figure 7.21: Solution for Exercise 1

3) The SciLab program is written below. The graph is shown in Figure 7.22.

exec('fourier.sci',-1);

period = 4; //Periodicity

function y = f(x) //Periodic Function

y = x;

endfunction

x = [-2*period : 0.01 : 2*period];

for i = 1:length(x)

 y(i)= periodic1(f,0.5*period,x(i));

end

plot2d(x,y')

5) The SciLab program is written below. The Fourier series expansion is shown

in Figure 7.23. The value of Fourier series coefficients 𝑎0 and 𝑏𝑛 will be

equal to zero. The values of other coefficients determined from the program

have been given in Table 7.3.

exec('fourier.sci',-1);

w = %pi; //Base angular frequency

period = (2*%pi)/w; //Base period

n = 5; //Number of harmonics

x = 0:0.01:2*period; //Range for plotting

function y = f(x); //Define the function

 y = cos(w*x) + cos(2*w*x);

endfunction

plot2d(x,f(x)); //Plot the function

90 Advanced Programming in SciLab

[a0,a,b] = fourier2(period,n,f);

Table 7.3: Fourier coefficients for Exercise 5

n 𝒂𝒏

1 1

2 1

3 0

4 0

5 0

Figure 7.22: Solution for Exercise 3

7) The SciLab program is written below and the harmonics are shown in Figure

7.24.

exec('fourier.sci',-1);

function y = f(x)

y = sign(sin(2*%pi*(1/(2*%pi))*x));

endfunction

period = 2*%pi;

x = 0:0.01:2*period;

plot2d(x,f(x)

 Solutions to Selected Questions 91

n = 1;

[a0,a,b] = fourier2(period,n,f);

n = 3;

[a0,a,b] = fourier2(period,n,f);

Figure 7.23: Solution for Exercise 5

The square wave is an odd function. Therefore the Fourier series coefficients, 𝑎0 and

𝑎𝑛 will be equal to zero. The other coefficients are given in Table 7.4. For a square

wave having amplitude (A), these coefficients are in accordance with the

theoretically expected values given by,

𝑏𝑛 =
4𝐴

𝑛𝜋
 if n is odd

0 if n is even

From Figure 7.24, it is clear that,

 Addition of higher order harmonics gives a better approximation of the original

function.

 Only odd harmonics are present in this approximation. This is due to the

symmetric nature of the function.

Table 7.4: Fourier coefficients for Exercise 7

n 𝒃𝒏

1 1.2732

92 Advanced Programming in SciLab

n 𝒃𝒏

2 0

3 0.4244

Figure 7.24: Solution for Exercise 7

9) The SciLab program is written below. The Fourier series expansion is shown

in Figure 7.25.

period = 2;

function a = periodic(f,T,x)

if (x >= 0) & (x <= T) then

 a = f(x);

elseif x < 0 then

 x_new = x + T;

 a = periodic(f,T,x_new);

elseif x > T then

 x_new = x - T;

 a = periodic(f,T,x_new);

end

endfunction

function y = f(x)

if x < period*0.2 then

 y = 5*x;

elseif x < period*0.8 then

 Solutions to Selected Questions 93

 y = 2

else

 y = 2-5*(x-1.6)

end

endfunction

x = [0:0.01:2*period];

for i = 1:length(x)

 y(i) = periodic(f,period,x(i));

end

plot2d(x,y')

n = 7;

[a0,a,b] = fourier2(period,n,f);

Figure 7.25: Solution for Exercise 9

12) The SciLab program is written below. The Fourier Transform is shown in

Figure 7.26.

sample_rate = 100;

i = 1;

for t = -1:1/sample_rate:1;

 time(i) = t;

 func(i) = sin(20*%pi*t)/exp(2*%pi.*t.*t);

 i = i+1;

end

94 Advanced Programming in SciLab

subplot(211)

plot2d(time,func)

X = fft(func);

N = length(time);

f = 0:40;

subplot(212)

plot2d(f,abs(X(1:length(f))))

Figure 7.26: Solution for Exercise 12

 Solutions to Selected Questions 95

CHAPTER 8

1) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

A = [1 2 11 ; 1 -1 5];

The Gauss-Seidel method will not converge.

Part (b)

exec('numerical_techniques.sci',-1)

A = [3 1 1 8 ; 1 5 -3 2 ; 2 -1 4 12];

The solution will be equal to 1, 2 and 3.

Part (c)

exec('numerical_techniques.sci',-1)

A = [2 4 6 14 ; 3 -2 1 -3 ; 4 2 -1 -4];

The Gauss-Seidel method will not converge.

2) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

A = [4 -2 ; 2 1];

B = [6 ; 45];

gauss_elimination(A,B)

The answer will come out to be, 𝑥 = 12, 𝑦 = 21

Part (b)

exec('numerical_techniques.sci',-1)

A = [6 -3 ; 1 5];

B = [-21 ; 46];

gauss_elimination(A,B)

The answer will come out to be, 𝑥 = 1, 𝑦 = 9

Part (c)

exec('numerical_techniques.sci',-1)

A = [1 1 -1 ; 4 -1 5 ; 3 2 -2];

B = [6 ; 8 ; 14];

96 Advanced Programming in SciLab

gauss_elimination(A,B)

The answer will come out to be, 𝑥 = 2, 𝑦 = 5, 𝑧 = 1

Part (d)

exec('numerical_techniques.sci',-1)

A = [0 2 3 ; 1 0 -2 ; 4 3 0];

B = [13 ; -5 ; 10];

gauss_elimination_pivot(A,B)

The answer will come out to be, 𝑥 = 1, 𝑦 = 2, 𝑧 = 3

Part (e)

exec('numerical_techniques.sci',-1)

A = [1 3 0 ; 1 0 3 ; 0 2 1];

B = [9 ; -3 ; 2];

gauss_elimination_pivot(A,B)

The answer will come out to be, 𝑥 = 3, 𝑦 = 2, 𝑧 = −2

Part (f)

exec('numerical_techniques.sci',-1)

A = [1 1 0 ; 0 1 1 ; 1 0 1];

B = [3 ; 5 ; 4];

gauss_elimination_pivot(A,B)

The answer will come out to be, 𝑥 = 1, 𝑦 = 2, 𝑧 = 3

3) The SciLab program is written below.

exec('numerical_techniques.sci',-1)

A = [3 4 0 ; 6 8 2 ; 1 1 3];

gauss_inverse(A)

The answer will come out to be,

𝐴−1 =
11 −6 4
−8 4.5 −3
−1 0.5 0

4) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

function func = f(x)

 Solutions to Selected Questions 97

func = 5*x + log(x) - 100

endfunction

Newton_Raphson(15,1e-4,1e-4)

The root will be equal to 19.406875

Part (b)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = %e^x - x.^3

endfunction

Newton_Raphson(3,1e-4,1e-5)

Newton_Raphson(1.5,1e-4,1e-5)

Roots are equal to 4.536404 and 1.857184

Part (c)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = 2.^x - x.^2

endfunction

Newton_Raphson(-1,1e-4,1e-5)

Newton_Raphson(1,1e-4,1e-5)

Newton_Raphson(3,1e-4,1e-5)

Roots are equal to -0.766663, 2.000000 and 4.000000

Part (d)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = x.*cos(x) + sin(x)

endfunction

Newton_Raphson(-0.5,1e-4,1e-5)

Newton_Raphson(1,1e-4,1e-5)

Newton_Raphson(3,1e-4,1e-5)

Newton_Raphson(7,1e-4,1e-5)

Newton_Raphson(10,1e-4,1e-5)

Newton_Raphson(13,1e-4,1e-5)

98 Advanced Programming in SciLab

The first few positive roots are equal to 0.000000, 2.028748, 4.913147,

7.978699, 11.085510 and 14.207458.

5) The SciLab program is written below. The graph is shown in Figure 8.5.

exec('numerical_techniques.sci',-1)

function func = f(x) //Define the function

func = x.*tan(x) - 1

endfunction

x = 0:0.1:8; //x-range for plotting

plot2d(x,f(x)) //Plot the function

Bisection_Method(0.5,1.5,100,1d-4);

Bisection_Method(3,4,100,1d-4);

Bisection_Method(6,7,100,1d-4);

Secant_Method(0.5,1.5,1e-4)

Secant_Method(3,4,1e-4)

Secant_Method(6,7,1e-4)

Regula_Falsi_Method(0.5,1.5,1e-4)

Regula_Falsi_Method(3,4,1e-4)

Regula_Falsi_Method(6,7,1e-4)

Newton_Raphson(0.5,1e-4,1e-4)

Newton_Raphson(3,1e-4,1e-4)

Newton_Raphson(6,1e-4,1e-4)

The roots determined from different methods are given in Table 8.2.

Table 8.2: Result for Exercise 5

Method Approximate Root

Bisection Method

0.860291

3.425598

6.437317

Secant Method

0.860334

3.425618

6.437298

 Solutions to Selected Questions 99

Method Approximate Root

Regula Falsi Method

0.860305

3.425602

6.437292

Newton Raphson Method

0.860334

3.425621

6.437304

6) The SciLab program is written below. The graphs are shown in Figure 8.6.

exec('numerical_techniques.sci',-1)

function func = f(x)

func = 2*sin(x) - x

endfunction

Newton_Raphson(1.5,1e-4,1e-4)

x = 0:0.1:3;

plot2d(x,x)

plot2d(x,2*sin(x))

plot2d(x,f(x))

plot2d([1.895494,1.895494],[0,1.895494],13)

The root will be equal to 1.895494

100 Advanced Programming in SciLab

Figure 8.5: Solution for Exercise 5

7) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = x.^2 - 3

endfunction

Bisection_Method(1,2,100,1d-6);

Newton_Raphson(1,1e-4,1e-4)

Secant_Method(1,2,1e-2)

Regula_Falsi_Method(0,1,1e-6)

 Solutions to Selected Questions 101

Figure 8.6: Solution for Exercise 6

Part (b)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = 4.*x.^2 - 3

endfunction

Bisection_Method(0,1,100,1d-6);

Newton_Raphson(1,1e-4,1e-5)

Secant_Method(0,1,2,1e-4)

Regula_Falsi_Method(0,1,1e-6)

Part (c)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = x.^3 - 2

endfunction

Bisection_Method(1,2,100,1d-5);

Newton_Raphson(1,1e-4,1e-5)

Secant_Method(1,2,1e-4)

Regula_Falsi_Method(0,1,1e-6)

102 Advanced Programming in SciLab

Part (d)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = x.^4 – 0.8

endfunction

Bisection_Method(0,1,100,1d-6);

Newton_Raphson(1,1e-4,1e-5)

Secant_Method(1,2,1e-4)

Regula_Falsi_Method(0,1,1e-6)

Part (e)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = x.^5 – 5

endfunction

Bisection_Method(1,2,100,1d-6);

Newton_Raphson(1,1e-4,1e-5)

Secant_Method(1,2,1e-4)

Regula_Falsi_Method(0,1,1e-6)

8) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = 2.*x.^3 - x.^2 - 5*x + 1

endfunction

Bisection_Method(-2,0,100,1d-4);

Bisection_Method(0,1,100,1d-4);

Bisection_Method(1,2,100,1d-4);

Newton_Raphson(-2,1e-4,1e-5)

Newton_Raphson(0,1e-4,1e-5)

Newton_Raphson(1.5,1e-4,1e-5)

The three roots are equal to, -1.454773, 0.195374 and 1.759408

Part (b)

 Solutions to Selected Questions 103

exec('numerical_techniques.sci',-1)

function f = f(x)

 f = 5.*x.^4 - 13*x.^3 - 1

endfunction

Bisection_Method(-2,0,100,1d-4);

Bisection_Method(0,1,100,1d-4);

Newton_Raphson(-0.5,1e-4,1e-5)

Newton_Raphson(1,1e-4,1e-5)

The roots are equal to -0.405212 and 2.611176.

9) The SciLab programs are written below.

Part (a)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = (3.*x.*x - 1)/2.0

endfunction

Bisection_Method(0,1,100,1d-4);

The positive root is equal to 0.577332

Part (b)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = (5.*x.^3 - 3.*x)/2.0

endfunction

Bisection_Method(-0.2,0.2,100,1d-4);

Bisection_Method(0.1,1,100,1d-6);

The positive roots are equal to 0.000000 and 0.774597

Part (c)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = (35.*x.^4 - 30.*x.^2 + 3)/8.0

endfunction

104 Advanced Programming in SciLab

Bisection_Method(0,0.5,100,1d-6);

Bisection_Method(0.5,1,100,1d-6);

The positive roots are equal to 0.339980 and 0.861136

Part (d)

exec('numerical_techniques.sci',-1)

function f = f(x)

f = (63.*x.^5 - 70.*x.^3 + 15*x)/8.0

endfunction

Bisection_Method(0,0.6,100,1d-6);

Bisection_Method(0.2,0.6,100,1d-6);

Bisection_Method(0.6,1,100,1d-6);

The positive roots are equal to 0.000000, 0.538470 and 0.906181.

10) The velocity of the object is given by,

𝑣 𝑡 = 3𝑡2 − 81
Therefore, in order to find the time at which the velocity becomes equal to

zero, we will have to determine the root of the following equation,

𝑡2 − 27 = 0
The SciLab program is written below.

exec('numerical_techniques.sci',-1)

function f = f(t)

f = t.^2 - 27

endfunction

Newton_Raphson(5,1e-4,1e-5)

